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Abstract

A semi-analytical finite element method is presented for analyzing the behavior of a laminated circular piezoelectric

cylinder under axisymmetric mechanical and electric loads. In this computationally efficient method, discretization

occurs in the thickness direction so that any number of layers with distinct material properties and thicknesses can be

accommodated. One end of this cylinder is assumed to be clamped and the other end is free. The mechanical loads

include axial force, torque, any distribution of pressure, longitudinal and circumferential surface shears, as long as they

can be represented by a power series in the axial coordinate. Electric loadings include voltage differences through the

thicknesses as well as voltage or surface charge distributions along the axis of the cylinder. Herein, loading conditions

leading to uniform, linearly and quadratically varying stress and electric displacement fields are considered. From the

discussion of these cases, the extension of the method to higher order axial variations of the loads will be apparent. This

problem and its solution procedure can be considered as an extension of Saint-Venant and Almansi-Michell problems

for elastic bodies to piezoelectric bodies. A number of verification examples are given where it can be seen that the

present results compare extremely well with known analytical solutions for a homogeneous cylinder and with numerical

results obtained via three-dimensional finite element analyses. In addition, an example problem on actuation and

sensing is provided to demonstrate the utility of the present technique for evaluating designs of this type of smart

structures.
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1. Introduction

Many applications have exploited the piezoelectric effect, including those in the fields of communica-

tions, hydro-acoustics, electro-optics and transducer technologies. Much of this technology is well known
and familiar, and dwelling further on the virtues of the piezoelectric coupling phenomenon is not necessary.

More recently, there has been an upsurge of activity in the development of smart or adaptive structures,

wherein these materials provide the means for sensing and actuation in passive and active control of

structural behavior. This paper is devoted to the quasi-static analysis of a circular piezoelectric cylinder

under general axisymmetric mechanical and electrical loads. The method of analysis described here pro-

vides solutions so that the coupled behavior can be clearly evaluated. An enlightened understanding of the

piezoelectric coupling behavior in such cylinders will enable designs that can enhance their sensing and

actuation functions.
The circular cylinder under consideration may be composed of any number of perfectly bonded layers,

each of a uniform thickness with distinct cylindrical piezoelectric properties. The analysis is based on linear

three-dimensional theory and semi-analytical finite elements where the discretization occurs over the

thickness of the cylinder. The formulation leads to a system of second-order ordinary differential equations

governing the nodal variables of the finite element model. While the axisymmetric loading may be general

along the length of the cylinder, its representation must be in polynomial form of the axial coordinate z. The
stress and electric displacement states resulting from these load components will in turn exhibit behaviors of

polynomial form, beginning with the axially uniform state, followed by states that vary linearly, qua-
dratically, etc. The general analysis scheme is first set forth. This is followed by detailed studies of the first

three polynomial terms of the axisymmetric load representation. In each case, the displacement and po-

tential fields in the axial direction is postulated at the outset, but the thickness distribution is left

unspecified. Based on this representation of the fields, a planar problem for the behavior in a generic cross-

section can be posed whose solution defines the functional form of the displacement field and voltage over

the thickness of the cylinder. Then, by imposing end conditions, lateral surface electric conditions, and

global equilibrium, it is possible to determine the generalized coordinates which are the amplitudes of the

displacement and the electric (potential) fields. From the discussion of these three load terms, the solution
form for the higher order polynomial loading terms will be apparent. The problem statement and solution

technique is an extension of the relaxed formulation of the Saint-Venant and Almansi-Michell problems for

prismatic elastic cylinders. Within the framework of this type of analysis, end tractions cannot be prescribed

on a point-wise basis but must be given in terms of integrals of these tractions.

A review of literature on the analysis of prismatic piezoelectric structures under quasi-static mechanical

and electrical loads from the viewpoint of the Saint-Venant and Almansi-Michell problems shows the

papers of Ies�an (1987), Batra and Yang (1995), Davi (1996), Bisegna (1998), Ma et al. (2001), Tarn (2002)

and Galic and Horgan (2002, 2003) to be relevant. Those of Ma et al. (2001), Tarn (2002) and Galic and
Horgan (2002, 2003), are especially pertinent as they consider circular piezoelectric cylinders under gen-

eralized plane strain conditions. Validation of the computer code, developed for determining numerical

results with the semi-analytical method, was achieved through comparisons with analytical results of these

authors as well as those obtained through a proprietary finite element analysis package (ANSYS, 1998).

The analytical and numerical methods for circular piezoelectric cylinders had their antecedence in purely

mechanical problems involving circular anisotropic cylinders. Many references on such problems are cited

by Ma et al. (2001) and Tarn (2002) (viz., Ting, 1996, 1999). In this respect, the numerical analysis pro-

cedure presented here is an extension of that developed by Huang and Dong (2001) for laminated,
anisotropic, circular cylinders.

In the following two sections, we set forth the governing equations and general solution strategy. Then,

the problems of mechanical and electrical loadings leading to axially uniform, linear, and quadratic stress

states are considered together with examples. Lastly, some concluding remarks are provided.
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2. Summary of governing equations

Consider a laminated piezoelectric cylinder of length L as shown in Fig. 1, where one end is restrained

and the other end is free (clamped end is at z ¼ L and the tip is at z ¼ 0). The thickness profile may consist
of any number of perfectly bonded layers, each possessing distinct thickness and linear piezoelectric

properties. We adopt cylindrical coordinates (r; h; z) with the origin located at the center on the tip end

cross-section and the z-axis running toward the clamped end.

The primary dependent variables are the components of the mechanical displacement u ¼ ½u; v;w�T,
stress r ¼ ½rrr; rhh; rzz; rhz; rrz; rrh�T, strain e ¼ ½err; ehh; ezz; ehz; erz; erh�T, electric displacement D ¼ ½Dr;Dh;Dz�T

and electric field E ¼ ½Er;Eh;Ez�T. It is convenient in our solution procedure to concatenate the mechanical

and electrical variables as
q ¼ e

E

� �
9�1

; Q ¼ r
D

� �
9�1

; v ¼ u

/

� �
: ð1Þ
For a given laminate of the piezoelectric cylinder, the constitutive relation is
Q ¼ C�q; where C� ¼ c �e

eT �

� �
: ð2Þ
In addition, there are generalized strain-displacement relations of the form
q ¼ Lfvg ¼ 1

2
ðru

�
þrTuÞ;�r/

�T
ð3Þ
where / is the electric potential (voltage). The governing equations are based on a semi-analytical finite
element formulation, where the discretization occurs in the thickness direction of the cylinder by constant

thickness layers, each capable of enjoying distinct piezoelectric properties and thickness. This method of

formulation was used by Siao et al. (1994), who derived discrete equations of motion for the study of

mechanical vibrations and waves in circular piezoelectric cylinders. Here, the elastostatic form of these

equations are used. Since much of the details of such a semi-analytical finite element formulation are given

in Siao et al. (1994), only the essence of the method is provided here.

In this version of the semi-analytical finite element formulation, the dependencies in the axial and cir-

cumferential directions is left undetermined at the outset, but finite element modeling is used for the radial
behavior in the form of three-node cylindrical laminas with quadratic interpolations. This kinematic field

on the element level is written as
Fig. 1. Problem geometry and the coordinate system.
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8>>><
>>>:

9>>>=
>>>;
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8>>><
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9>>>=
>>>;

ð4Þ
where ðu; v;w;/Þ are arrays of the four nodal values of the displacement and electric potential fields for a

given element. According to this strategy, the operator L in Eq. (3) should be partitioned into sub-

operators with differentiations with respect to r, h, z. To wit,
Lfvg ¼ ½Lr þLh þLz�fvg ð5Þ

Substitution of Eq. (4) into Eq. (5) gives
q ¼ b1vþ b2vh þ b3vz ð6Þ

where ðb1; b2; b3Þ are strain-transformation matrices. Hence the element kinetic quantities are
Q ¼ C�½b1vþ b2vh þ b3vz�: ð7Þ

The theorem of minimum potential energy, where an electric enthalpy function due to Tiersten (1969)

serves as the Lagrangian integrand, is used to derive the governing kinematic equations of equilibrium in
the form
K1Vþ K2V;h þ K3V;z � K4V;hh � K5V;hz � K6V;zz ¼ Fðh; zÞ ð8Þ

where Fðh; zÞ is the assembled consistent load vector for applied surface tractions, electrical inputs, and the

body forces; and Vðh; zÞ is the assembled array of nodal displacements and electric potentials
Vðh; zÞ ¼ ½U ; V ;W ;/�T� ð9Þ

The details of the stiffness matrices in Eq. (8) may be found in Siao et al. (1994), where it was shown that K1,

K4, K5, and K6 are symmetric, while K2, and K3 are antisymmetric. For a finite element model consisting of

N nodes, each component, U , V , W or / in V is N -dimensional, so that each stiffness matrix Ki will be of

size (4N � 4N ).
Herein, we are concerned with loading conditions on the cylinder by tractions and electrical loadings on

its lateral surfaces, and by body forces that are axisymmetric only, so that V ¼ VðzÞ and Eq. (8) reduces to
K1Vþ K3V;z � K6V;zz ¼ FðzÞ: ð10Þ
3. General solution strategy

In our analysis procedure, the axisymmetric load FðzÞ must be expressed as polynomials of z. To wit
FðzÞ ¼ F0 þ zF1 þ z2F2 þ � � � þ zkFk þ � � � þ F0cðzÞ þ F1cðzÞ þ F2cðzÞ þ � � � þ FkcðzÞ þ � � � ð11Þ

On the tip end, axial and torsional shear tractions may occur. Electrical inputs may be imposed on both the

tip and root ends. Each polynomial term Fk pertaining to the mechanical loads and body forces in Eq. (11)

can be separated into two parts
Fk ¼ Fka þ Fkb ðk ¼ 0; 1; 2; . . .Þ; ð12Þ

where Fka accounts for these loads which are void of any resultant force or moment in the z-direction, while
Fkb allows for such resultants. Examples of F0a are uniform external and internal pressures, and centrifugal

forces (x2r loads), F1a contains the nodal values of linear variations of these loads. Examples of F0b are
uniform axial and circumferential surface shear tractions and axial body force, and F1b represents the linear
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variations of them. In addition, Each polynomial term FjcðzÞ pertaining to the electric loads can be written

as
Fig. 2.

as the
FjcðzÞ ¼ Fjc0 þ zFjc1 þ z2Fjc2 þ � � � þ zjFjcj: ð13Þ
Load vectors Fjc0 are intended for a potential difference between the inner and outer lateral surfaces that is

uniform in z, Fjc1 for linear variations of this potential differences, Fjc2 for quadratic variations, etc. In

general, these forces are not known a priori as their values arise not only from direct electric input, but also

from the mechanical behavior through piezoelectric coupling.
The solution to Eq. (10) with loads in the form of Eq. (11) can be stated in series form as
VðzÞ ¼ V0ðzÞ þ V1ðzÞ þ � � � þ VkðzÞ þ � � � ; ð14Þ

where each component VkðzÞ represents a particular axial variation of the piezoelectric state, i.e., V0ðzÞ
represents a uniform state, V1ðzÞ a linear state, etc. Substituting Eqs. (11) and (14) into Eq. (10) yields an

equation, which can be separated into following systems of equations:
K1V0 þ K3V0;z � K6V0;zz ¼ F0a þ F0c0; ð0Þ
K1V1 þ K3V1;z � K6V1;zz ¼ F0b þ F1c0 þ zðF1a þ F1c1Þ; ð1Þ

..

.

K1Vk þ K3Vk;z � K6Vk;zz ¼ zk�1Fðk�1Þb þ zkFka þ Fkc0 þ zFkc1 þ � � � þ zkFkck: ðkÞ

ð15Þ
This grouping is predicated on a particular loading condition inducing a corresponding axially varying

piezoelectric state. As they shall be referred in the sequel as Problem I, Problem II, etc., respectively,

problem (15.0) involves a uniform stress and electric displacement state in z, problem (15.1) a linear state in

z, etc. (see, Fig. 2). The analysis of these equations is pursued by sequentially solving for V0, V1, etc.
Prescribed end conditions must be given for every equation in (15). Since a relaxed formulation is

presumed, the end conditions need only to be met on an integral basis in terms of the resultants of tractions

and electric displacement. The resultants over a cross-section at any station z along the length of this

cylinder are given by the integrals
PzðzÞ ¼ 2p
Z ro

ri

rzzðzÞrdr; MzðzÞ ¼ 2p
Z ro

ri

rhzðzÞr2 dr;

DzðzÞ ¼ 2p
Z ro

ri

DzðzÞrdr:
ð16Þ
If a solution yields end stress distributions rzz, rhz and rrz and electric displacement Dz that differ from the

conditions on a point-wise basis, this difference is a self-equilibrated state whose effect is confined to a
Sequential problems involving surface tractions and electric loads expressed as polynomials. Problems II and beyond are known

Almansi-Michell extensions of Saint-Venant’s problem.
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region near the end according to Saint-Venant’s Principle. Means to account for the quantitative manner in

which such self-equilibrated states decay into the interior will be addressed in a companion paper.

Global equilibrium must be satisfied by the loads acting on the entire cylinder or on any part of it. These

conditions are enforced in the process of the solution. In addition, if there are no electric charges generated
or annihilated within the cylinder, then the integral of the outward electric displacement component over

the cylinder’s entire exterior surface must be zero, i.e.,
Z
R
D � nds ¼ 0; ð17Þ
where D is the electric displacement, n the unit outward normal to the cylinder, and R the exterior surface,

which includes the lateral surfaces and the two ends. This conservation requirement is not used in the

solution procedure, but it provides an a posteriori consistency check of the results. All of our numerical

results will undergo this validation.
4. Solution preliminaries

In the sequential treatment of the series of Eq. (15), the solution vector Vk at a given step will depend on

data from previous steps, i.e., Vk�1;Vk�2; . . . ;V0. According to Ies�an’s (1986) method, the appropriate field

for a given step is obtained by integrating the solution vector of the previous step once with respect to z. The
form of V0––considered in the first step in this procedure––is obtained by integrating rigid body dis-

placements once with respect to z. For axisymmetry, two such rigid body motions are relevant, i.e., axial

translation and rotation about the z-axis. Thus, the rigid body motions may be stated as
VRB ¼ URBaRB; ð18Þ
where aRB is an array of amplitudes of each rigid body component and URB is a (4N � 2) matrix of the two

rigid body kinematic distributions in r given by
aRB ¼ ½w0;xz�T
URB ¼ ½R3;R6�

where
R3 ¼ ½0; 0; I; 0�T
R6 ¼ ½0;R; 0; 0�T

�
ð19Þ
with column vectors I and R containing N unit entries and the r-coordinates of the N nodes, respectively.

Rigid body displacement field VRB when substituted into the homogeneous form of Eq. (10) gives
K1R3 ¼ 0; K1R6 ¼ 0: ð20Þ
On the element level, these rigid body components, denoted by lower case symbols, yield null values

when substituted strain-displacement relationships in Eq. (3), i.e.,
brr3 ¼ 0; brr6 ¼ 0: ð21Þ
It is noted that there is also a rigid body electrical term in the form of a constant potential in the form
VRB ¼ R7a/; where R7 ¼ ½0; 0; 0; I�T; ð22Þ
which satisfies
K1R7 ¼ 0: ð23Þ
This electrical mode can be added to any solution without affecting any of the stresses or electric dis-

placements. Expressions (20), (21) and (23) are useful identities in our subsequent discussion.
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5. Problem I––uniform state

A uniform state is governed by Eq. (15.0); reproduced here as
Fig. 3.

tractio
K1V0 þ K3V0;z � K6V0;zz ¼ F0a þ F0c0: ð24Þ

The components of the load vectors on the right-hand side are illustrated in Fig. 3. The mechanical loads

must exhibit no resultant axial force or torque. For uniform pressures, say �rri and �rro on the inner and outer

surfaces, ri and ro, respectively, their consistent load components are 2pri�rri and �2pro�rro, and obviously

they have no axial resultants. For axial and circumferential surface shear tractions, say ð�rzi; �rzoÞ and
ð�rhi; �rhoÞ on the inside and outside surfaces, self-equilibrium of these two traction pairs require that
�rzi2pri ¼ �rzo2pro and �rhi2pr2i ¼ �rho2pr2o: ð25Þ

For prescribed inside and outside charges ðDri ;DroÞ, the electrical load vector F0c will have consistent

charge terms ð2priDri ; 2proDroÞ. If voltages are prescribed instead, say �/i and
�/o, the resulting solution will

yield a distribution of Dr over the thickness. For an admissible electrostatic solution, the total charges over

the cylinder’s exterior surfaces must be conserved, whether they are prescribed or computed. This con-

servation principle requires that Dri and Dro must obey
Dri 2pri ¼ Dro2pro: ð26Þ

At the tip end z ¼ 0, an axial force Pz and torque Mz may be applied. Within the framework of a Saint-

Venant solution, the restraint at the clamped end involves some fixity condition. Therefore, the present
solution will be unique only within a rigid body displacement.

5.1. Analysis

The most general form of the kinematic field for Eq. (24) is
V0 ¼ aI3ðzR3 þWI3Þ þ aI6ðzR6 þWI6Þ þUIP þ
X
a¼1

cIaUIEa þURBaRB: ð27Þ
Surface tractions, electric potential, and electric displacements considered in Problem I. Axial and circumferential surface

ns must be self-equilibrated. This requirement is removed for higher-order problems.
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The first two terms with generalized coordinates aI3 and aI6 relate to extension and torsion, where

ðzR3; zR6Þ and ðWI3;WI6Þ represent the primal behavior and cross-sectional warpages, respectively, and UIP

represents the particular solution for mechanical loads F0a. The series UIEa with amplitudes cIa represent the
response to electric loading F0c. The number of terms is a function of the number of cylindrical surfaces
with prescribed electric conditions. Herein, two will be used, for inside and outside surface electric con-

ditions. Lastly, URBaRB is a rigid body displacement whose values depend on the restraint conditions at the

root end of the cylinder. This kinematic field can be obtained by integrating rigid body displacement (18)

once with respect to z. Substitution of Eq. (27) into Eq. (24) gives
z½aI3K1R3 þ aI6K1R6� þ aI3fK1W3 þ K3R3g þ aI6fK1W6 þ K3R6g þ ½K1UIP � F0a�

þ
X2
a¼1

fcIaK1UIEag
"

� F0c0

#
¼ 0: ð28Þ
To satisfy Eq. (28), each square bracketed term must vanish. Those multiplied by z vanish due to the

identities presented in Eq. (20). The warpages ðW3;W6Þ and the particular solution UIP are determined by
K1WI3 ¼ �K3R3; K1WI6 ¼ �K3R6; K1UIP ¼ F0a: ð29Þ

Electric load vector F0c0 is not known a priori, as it depends on the lateral surface electric conditions,

which are composed of all terms in V0. Hence, cIaUIEa’s cannot be determined. However, we can let UIEa be
the response to a unit electric charge or flux on a cylindrical surface r ¼ ra. Denoting this load vector by

f0ca, which only contains a unit charge in the appropriate degree of freedom; then UIEa satisfies
K1UIEa ¼ f0ca ða ¼ 1; 2Þ: ð30Þ

To invert Eqs. (29) and (30), kinematic restraints must be imposed to preclude rigid body motions. With

respect to the potential /, the problem involves the grounding of a surface. Thus, for a unit outside surface

charge, the inside surface is grounded, and for a unit inside surface charge, the outside surface is grounded.
After determining these distributions, the nodal stress and electric displacement distributions Q can be

constructed as
Q ¼ aI3C
�ðbrWI3 þ bzr3Þ þ aI6C

�ðbrWI6 þ bzr6Þ þ C�brUIP þ C�
X2
a¼1

cIabrUIEa

 !
: ð31Þ
The integrals of rzz and rhz over any generic cross-section according to Eq. (16) gives
Pz
Mz

� �
¼ jI33 jI36

jI36 jI66

� �
aI3
aI6

� �
þ PIP

MIP

� �
þ
X2
a¼1

cIa
PIEa
MIEa

� �
; ð32Þ
where jIij, ði; j ¼ 3; 6Þ are the cross-sectional stiffness influence coefficients given by
jI33 ¼ 2p
XM
m¼1

Z
rzzI3rdr; jI66 ¼ 2p

XM
m¼1

Z
rhzI6r2 dr

jI36 ¼ 2p
XM
m¼1

Z
rzzI6rdr ¼ 2p

XM
m¼1

Z
rhzI3r2 dr

ð33Þ
and PIP , MIP , PIEa, and MIEa denote the resultants of the particular solutions for mechanical and electrical

loads
PIP ¼ 2p
XM
m¼1

Z
rzzðIPÞrdr; MIP ¼ 2p

XM
m¼1

Z
rhzðIPÞr2 dr; ð34Þ



1 Su

vectors

E. Taciroglu et al. / International Journal of Solids and Structures 41 (2004) 5185–5208 5193
PIEa ¼ 2p
XM
m¼1

Z
rzzðEIaÞrdr; MIEa ¼ 2p

XM
m¼1

Z
rhzðEIaÞr2 dr: ð35Þ
Since the stress and electric displacement states are uniform in z, Pz and Mz in Eq.(32) must represent the

applied force and torque at the tip end.

Recapitulating, all terms in Eq. (32) are known except for coefficients aI3, aI6, cI1 and cI2. They are
dependent upon the applied force and torque, Pz and Mz and electric surface conditions. A number of

electric surface conditions are possible. Four will be considered in the sequel.

5.2. Both surfaces open

In this case, called the open circuit condition, there is no specification of lateral surface electric conditions

so that there is no need for the terms cIaUIEa in displacement field Eq. (27). Coefficients aI3 and aI6 are

determined by
jI33 jI36

jI36 jI66

� �
aI3
aI6

� �
¼ Pz � PIP

Mz �MIP

� �
: ð36Þ
5.3. Prescribed voltages on both surfaces

If voltages ð�/i;
�/oÞ, respectively, are prescribed on the inside and outside surfaces, these conditions are

given by 1
wI3/ðriÞaI3 þ wI6/ðriÞaI6 þ UIE1/ðriÞcI1 þ UIE2/ðriÞcI2 þ UIP/ðriÞ ¼ �/i;

wI3/ðroÞaI3 þ wI6/ðroÞaI6 þ UIE1/ðroÞcI1 þ UIE2/ðroÞcI2 þ UIP/ðroÞ ¼ �/o:
ð37Þ
Casting these conditions together with those of Eq. (32) into matrix form yields
jI33 jI36 PIE1 PIE2
jI36 jI66 MIE1 MIE2

wI3/ðriÞ wI6/ðriÞ UIE1/ðriÞ UIE2/ðriÞ
wI3/ðroÞ wI6/ðroÞ UIE1/ðroÞ UIE2/ðroÞ

2
664

3
775

aI3
aI6
cI1
cI2

8>><
>>:

9>>=
>>; ¼

Pz � PIP
Mz �MIP

�/i � UIP/ðriÞ
�/o � UIP/ðroÞ

8>><
>>:

9>>=
>>;: ð38Þ
If �/i ¼ �/o ¼ 0, the solution for aI3, aI6, cI1 and cI2 define a short-circuited condition.

5.4. Prescribed electric displacements

If DrðriÞ and DrðroÞ are prescribed electric charges on the inside and outside surfaces, then
DI3rðriÞaI3 þ DI6rðriÞaI6 þ DIE1rðriÞcI1 þ DIE2rðriÞcI2 þ DIPrðriÞ ¼ Dri ;

DI3rðroÞaI3 þ DI6rðroÞaI6 þ DIE1rðroÞcI1 þ DIE2rðroÞcI2 þ DIPrðroÞ ¼ Dro :
ð39Þ
The coefficients aI3, aI6, cI1 and cI2 are determined by
jI33 jI36 PIE1 PIE2
jI36 jI66 MIE1 MIE2

DI3rðriÞ DI6rðriÞ DIE1rðriÞ DIE2rðriÞ
DI3rðroÞ DI6rðroÞ DIE1rðroÞ DIE2rðroÞ

2
664

3
775

aI3
aI6
cI1
cI2

8>><
>>:

9>>=
>>; ¼

Pz � PIP
Mz �MIP

Dri � DIPrðriÞ
Dro � DIPrðroÞ

8>><
>>:

9>>=
>>;: ð40Þ
bscripts ðu; v;w;/Þ will be used with displacement vectors wI3, wI6, UIE1, etc. to designate the corresponding components in these

. An expression in parenthesis, for example (ri) in wI3/ðriÞ, denotes the nodal location of the given component.
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5.5. Mixed electric conditions

Suppose an electric displacement DrðriÞ is prescribed on the inside surface and potential �/o is given on

the outside surface, then equations for the coefficients take the form
Table

Mater

c11 ¼
c33 ¼
c44 ¼
c12 ¼
c13 ¼
c44 ¼
c66 ¼
c22 ¼
c55 ¼
jI33 jI36 PIE1 PIE2
jI36 jI66 MIE1 MIE2

DI3rðriÞ DI6rðriÞ DIE1rðriÞ DIE2rðriÞ
wI3/ðroÞ wI6/ðroÞ UIE1/ðroÞ UIE2/ðroÞ

2
6664

3
7775

aI3
aI6
cI1
cI2

8>>><
>>>:

9>>>=
>>>;

¼

Pz � PIP
Mz �MIP

Dri � DIPrðriÞ
�/o � UIP/ðroÞ

8>>><
>>>:

9>>>=
>>>;
: ð41Þ
5.6. Validation example for problem I

We shall analyze a homogeneous circular cylinder with a length to thickness ratio L=t ¼ 20, and with

inner and outer radii to thickness ratios ri=t ¼ 1:0, ro=t ¼ 2:0. The cylinder is made of PZT4 material (lead–

zirconium–titanate), which is a widely used piezoceramic in actuator/sensor technology. The material

constants for PZT4 are displayed in Table 1 (see, for example, Berlincourt et al., 1964).

The cylinder is subjected to uniform and resultant-free loads. To wit, the applied loads are uniform
circumferential shear tractions, �rhi ¼ 4:0 Pa, �rho ¼ 1:0 Pa; uniform axial shear tractions, �rzi ¼ 2:0 Pa,
�rzo ¼ 1:0 Pa; uniform outside surface voltage �/o ¼ 100 V, and internal pressure �rri ¼ 100 Pa. The variation

of the normalized stresses, displacements and potential through the thickness of the cylinder as computed

via the semi-analytic method proposed here and exact solutions by Tarn (2002) are displayed in Fig. 4. The

agreement between these two results are remarkable. Furthermore, the total free-surface integral of the

normal electric displacements defined in Eq. (17) yield the values of {0.0, 1.1 · 10�8, 6.1 · 10�12, 0.0}

Coulombs for the uniform pressure, uniform potential, self-equilibrated axial and self-equilibrated tor-

sional shear problems, respectively. The corresponding largest individual integrated free-surface fluxes––
either of left-face, right-face, interior or exterior surfaces––are {3.1 · 10�7, 2.3 · 10�4, 1.2 · 10�7, 0.0}

Coulombs, respectively. Noting that the total values (which are ideally equal to zero) are 4–7 orders of

magnitude smaller than the individual values. These final results validate the consistency (or of the con-

servation of electric charges property) of the semi-analytic method.

Also note that the results displayed in Fig. 4 are normalized with respect to their maximum values. These

maximum values are omitted for brevity as the validation example is only meant to display the veracity of

the semi-analytic approach.
1

ial constants for PZT4 crystal

13:90� 1010 (Pa) e13 ¼ �5:2028 (C/m2) �11 ¼ 6:4605� 10�9 (F/m)

11:54� 1010 e33 ¼ 15:0804 �33 ¼ 5:6198� 10�9

2:56� 1010 e15 ¼ 12:7179 �22 ¼ �11
7:78� 1010 e23 ¼ e13
7:43� 1010 e42 ¼ e15
2:56� 1010

3:06� 1010

c11; c23 ¼ c13
c44



Fig. 4. Validation for Problem I: the results are for self-equilibrated circumferential (Row a) and axial (Row b) shear tractions, and

uniform pressure (Row c) and voltage (Row d) distributions prescribed on the exterior surface of the cylinder. The symbols and the

(dashed, dotted, etc.) lines denote the semi-analytic and the exact solutions provided by Tarn (2002), respectively.
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6. Problem II––linearly varying state

The linearly varying state is governed by Eq. (15.1); reproduced here as
K1V1 þ K3V1;z � K6V1;zz ¼ F0b þ F1c0 þ zðF1a þ F1c1Þ: ð42Þ
Consistent load vector F1a represents linearly varying pressure distributions, without an axial resultant,

and F0b represents the uniform axial and circumferential shears with axial force and torque resultants.

Uniform and linearly varying electric loads are contained in F1c0 and F1c1, respectively. Note that a uniform

pressure could have been included in F0b, but pressure as well as self-equilibrated surface axial and cir-
cumferential shears were already taken into account in F0a of Problem I.
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6.1. Analysis

The most general form of the displacement field for Eq. (42) is obtained by integrating Eq. (24) once with

respect to z, which yields
V1 ¼ aI3
z2

2
R3

�
þ zWI3 þWII3

�
þ aI6

z2

2
R6

�
þ zWI6 þWII6

�
þ aII3ðzR3 þWI3Þ þ aII6ðzR6 þWI6Þ

þ zUIIP1 þUIIP2 þ
X2
a¼1

½cIaðzUIEa þUIIEaÞ þ cIIaUIEa� þURBaRB; ð43Þ
where aI3, aI6, cI1, cI2, aII3, aII6, cII1 and cII2 are the generalized deformation coordinates. In this expression,

WII3 and WII6 are new warpages, UIIP1, UIIP2 are particular solutions for the mechanical loads, and UIIE1 and

UIIE2 are new fields for the electric loading. All other vectors are known from previous considerations.

Coefficients aI3, aI6, cI1 and cI2 are new and are completely unrelated to the values of Problem I. Note that

Eq. (43) can be obtained by integrating Eq. (24) once with respect to z. This method of integrating the
previous displacement field for this next level of stress and electric displacement variations follows Ies�an’s
method (1987) for Saint-Venant’s problem.

To determine all of the vectors in Eq. (43), we substitute it into Eq. (42) and this leads to three sets of

terms multiplied by z0, z1 and z2 that contain all of the defining equations. Many of these equations are

repetitions of (the rigid body, etc.) identities in Problem I. The new warpages WII3 and WII6 and new

particular solutions for the mechanical loads are determined by
K1WII3 þ K3WI3 � K6R3 ¼ 0; K1WII6 þ K3WI6 � K6R6 ¼ 0; ð44Þ
K1UIIP1 � F1a1 ¼ 0; K1UIIP2 þ K3UIIP1 � F0b1 ¼ 0: ð45Þ
The first of Eq. (45) yields UIIP1, whereupon the second gives UIIP2 in which the uniform mechanical loads

and warpages in K3UIIP1 drive this solution. The equations for the electric terms are
X2
a¼1

cIaK1UIEa ¼ F1c1;

X2
a¼1

cIaðK1UIIEa þ K3UIEaÞ þ
X2
a¼1

cIIaK1UIEa ¼ F1c0:

ð46Þ
As in Problem I, electric load vector F1c1 depends upon various sources that may not be known at the

outset, so that Eq. (46) must be treated in the same way as Problem I. Solutions for UIEa give the distri-
butions for unit electric charges on the lateral surfaces, and they are identical to those found in Problem I.

In the second equation, UIIEa can be considered to be driven by its corresponding unit solution UIEa, so that

the appropriate equation for UIIEa is
K1UIIEa þ K3UIEa ¼ 0 ða ¼ 1; 2Þ: ð47Þ
After the complete displacement field is established, the explicit forms of F1c1 and F1c0 can then be stated,

but their forms are not essential (i.e. they are not needed for determining the generalized coordinates).

Upon establishing the displacement field distributions, the (stress and electric displacement) vector Q
within an element can be formed through
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Q ¼ zC�½aI3ðbrWI3 þ bzr3Þ þ aI6ðbrWI6 þ bzr6Þ þ brUIIP1� þ C�½aI3ðbrWII3 þ bzWI3Þ
þ aI6ðbrWII6 þ bzWI6Þ þ aII3ðbrWI3 þ bzr3Þ þ aII6ðbrWI6 þ bzr6Þ þ brUIIP2 þ bzUIIP1�

þ C�
X2
a¼1

½zcIabrUIEa þ cIaðbrUIIEa þ bzUIEaÞ þ cIIabrUIEa�: ð48Þ
Integration of rzz and rhz over a generic cross-section according to Eq. (16) yields
PzðzÞ
MzðzÞ

� �
¼ z

jI33 jI36

jI36 jI66

� �
aI3
aI6

� ��
þ

PIIP1
MIIP1

� ��
þ

jII33 jII36

jII36 jII66

� �
aI3
aI6

� �
þ

jI33 jI36

jI36 jI66

� �
aII3
aII6

� �

þ
PIIP2
MIIP2

� �
þ z
X
a

cIa
PIEa
MIEa

� �
þ
X
a

cIa
PIIEa
MIIEa

� �
þ
X
a

cIIa
PIEa
MIEa

� �
; ð49Þ
where jIij’s were defined in Eq. (33) and jIIij’s have the same formulas as those for jIij’s except with rzzII3

and rhzII3 replacing rzzI3 and rhzI3, i.e., jII33 ¼ 2p
PM

m¼1

R
rzzII3rdr, etc. Similarly, mechanical load resultants

ðPIIPi;MIIPi; i ¼ 1; 2Þ are given by Eq. (34) except with rzzðIIPiÞ and rhzðIIPiÞ replacing rzzðIPÞ and rhzðIP Þ, i.e.,

PIIP1 ¼ 2p
PM

m¼1

R
rzzðIIP1Þrdr, etc. Electric resultants PIEa and MIEa were defined by Eq. (35) and

ðPIIEa;MIIEa; a ¼ 1; 2Þ are given by the same formula but with rzzðEIIaÞ and rhzðEIIaÞ replacing rzzðEIaÞ and rhzðEIaÞ
as in PIIEa ¼ 2p

PM
m¼1

R
rzzðEIIaÞrdr, etc.

Eq. (49) defines Pz and Mz at any z. They depend on the generalized coordinates, which can be deter-

mined in two stages. First, we invoke global equilibrium by requiring the rate of change of Pz and Mz to be

equal to resultant external load and torque per unit length, Pz1 and Mz1, of the prescribed axial and cir-

cumferential shears, i.e.,
oPz
oz

þ Pz1 ¼ 0 and
oMz

oz
þMz1 ¼ 0: ð50Þ
Differentiating Eq. (49) and enforcing Eq. (50) yields
jI33 jI36

jI36 jI66

� �
aI3
aI6

� �
þ PIIP1

MIIP1

� �
þ
X2
a¼1

cIa
PIIEa
MIIEa

� �
þ Pz1

Mz1

� �
¼ 0: ð51Þ
Setting z ¼ 0 in Eq. (49) gives an expression involving Pzð0Þ and Mzð0Þ, i.e., the applied axial force and

torque at the tip end, as
jII33 jII36

jII36 jII66

� �
aI3
aI6

� �
þ jI33 jI36

jI36 jI66

� �
aII3
aII6

� �
þ PIIP2

MIIP2

� �
þ
X
a

cIa
PIEa
MIEa

� �
þ
X
a

cIIa
PIEa
MIEa

� �

¼ Pzð0Þ
Mzð0Þ

� �
: ð52Þ
Such tip-end loads were considered in Problem I, and can be set equal to zero in this calculation. Surface

electric conditions must be appended to these equations before a solution is possible. These conditions are

treated in the sequel.

6.2. Both surfaces open

No electrical terms are needed in V1 of Eq. (43), so that Eq. (51) takes the form
jI33 jI36

jI36 jI66

� �
aI3
aI6

� �
¼ � PIIP1 þ Pz1

MIIP1 þMz1

� �
: ð53Þ
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After determining aI3 and aI6, Eq. (52) is used for finding aII3 and aII6. To wit
jI33 jI36

jI36 jI66

� �
aII3
aII6

� �
¼ � jII33 jII36

jII36 jII66

� �
aI3
aI6

� �
� PIIP2

MIIP2

� �
: ð54Þ
6.3. Linearly varying voltages on both surfaces

Let the inside and outside lateral surfaces have distinct linear voltage gradients along z at rates of D/i

and D/o. Also, assume that the electric potentials on the inside and outside surfaces at z ¼ 0 are zero. No

generality is lost, since non-zero uniform potentials, �/i and
�/o, can be taken into account by the super-

position of Problem I. For prescribed potential gradients D/i and D/o, the two potential gradient

expressions, obtained through the differentiation of Eq. (43), are
wI3/ðriÞaI3 þ wI6/ðriÞaI6 þ UIE1/ðriÞcI1 þ UIE2/ðriÞcI2 þ UIIP1/ðriÞ ¼ D/i;

wI3/ðroÞaI3 þ wI6/ðroÞaI6 þ UIE1/ðroÞcI1 þ UIE2/ðroÞcI2 þ UIIP1/ðroÞ ¼ D/o:
ð55Þ
These expressions along with Eq. (51) constitute the four equations for aI3, aI6, cI1, and cI2, given as
jI33 jI36 PIE1 PIE2
jI36 jI66 MIE1 MIE2

wI3/ðriÞ wI6/ðriÞ UIE1/ðriÞ UIE2/ðriÞ
wI3/ðroÞ wI6/ðroÞ UIE1/ðroÞ UIE2/ðroÞ

2
664

3
775

aI3
aI6
cI1
cI2

8>><
>>:

9>>=
>>; ¼

�ðPIIP1 þ Pz1Þ
�ðMIIP1 þMz1Þ
D/i � UIIP1/ðriÞ
D/o � UIIP1/ðroÞ

8>><
>>:

9>>=
>>;: ð56Þ
Next, Eq. (52) with /i ¼ 0 and /o ¼ 0 in Eq. (43) provides the means for determining aII3, aII6, cII1, and cII2.
Thus
jI33 jI36 PIE1 PIE2
jI36 jI66 MIE1 MIE2

wI3/ðriÞ wI6/ðriÞ UIE1/ðriÞ UIE2/ðriÞ
wI3/ðroÞ wI6/ðroÞ UIE1/ðroÞ UIE2/ðroÞ

2
664

3
775

aII3
aII6
cII1
cII2

8>><
>>:

9>>=
>>;

¼ �

PIIP2
MIIP2

UIIP2/ðriÞ
UIIP2/ðroÞ

8>><
>>:

9>>=
>>;�

jII33 jII36 PIIE1 PIIE2
jII36 jII66 MIIE1 MIIE2

wII3/ðriÞ wII6/ðriÞ UIIE1/ðriÞ UIIE2/ðriÞ
wII3/ðroÞ wII6/ðroÞ UIIE1/ðroÞ UIIE2/ðroÞ

2
664

3
775

aI3
aI6
cI1
cI2

8>><
>>:

9>>=
>>;: ð57Þ
6.4. Linearly varying electric displacement on both surfaces

Let DDrðriÞ and DDrðroÞ be prescribed gradients of electric charges on the inside and outside surfaces.

Enforcing this condition with Eq. (48) leads to
DI3rðriÞaI3 þ DI6rðriÞaI6 þ DIE1rðriÞcI1 þ DIE2rðriÞcI2 þ DIIP1rðriÞ ¼ DDri ;

DI3rðroÞaI3 þ DI6rðroÞaI6 þ DIE1rðroÞcI1 þ DIE2rðroÞcI2 þ DIIP1rðroÞ ¼ DDro :
ð58Þ
These relations, together with Eq. (51), give the four equations for aI3, aI6, cI1, and cI2. Thus
jI33 jI36 PIE1 PIE2
jI36 jI66 MIE1 MIE2

DI3rðriÞ DI6rðriÞ DIE1rðriÞ DIE2rðriÞ
DI3rðroÞ DI6rðroÞ DIE1rðroÞ DIE2rðroÞ

2
664

3
775

aI3
aI6
cI1
cI2

8>><
>>:

9>>=
>>; ¼

�ðPIIP1 þ Pz1Þ
�ðMIIP1 þMz1Þ
DDri � DIIP1rðriÞ
DDro � DIIP1rðroÞ

8>><
>>:

9>>=
>>;: ð59Þ
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The electric displacement Dr on the outside and inside surfaces may be assumed to be zero as non-

vanishing values were already considered in Problem I. Evaluating Dri and Dro at z ¼ 0 by Eq. (48) and

setting them equal to zero yields
2 N
DII3rðriÞaI3 þ DII6rðriÞaI6 þ DIIE1rðriÞcI1 þ DIIE2rðriÞcI2 þ DIIP2rðriÞ þ DI3rðriÞaII3 þ DI6rðriÞaII6
þ DIE1rðriÞcII1 þ DIE2rðriÞcII2 ¼ 0;

DII3rðroÞaI3 þ DII6rðroÞaI6 þ DIIE1rðroÞcI1 þ DIIE2rðroÞcI2
þ DIIP2rðroÞ þ DI3rðroÞaII3 þ DI6rðroÞaII6 þ DIE1rðroÞcII1 þ DIE2rðroÞcII2 ¼ 0:

ð60Þ
Combining these equations with Eq. (52), the equations for aII3, aII6, cII1 and cII2 are obtained as
jI33 jI36 PIE1 PIE2
jI36 jI66 MIE1 MIE2

DI3rðriÞ DI6rðriÞ DIE1rðriÞ DIE2rðriÞ
DI3rðroÞ DI6rðroÞ DIE1rðroÞ DIE2rðroÞ

2
6664

3
7775

aII3
aII6
cII1
cII2

8>>><
>>>:

9>>>=
>>>;

¼ �

PIIP2
MIIP2

DIIP2rðriÞ
DIIP2rðroÞ

8>>><
>>>:

9>>>=
>>>;

�

jII33 jII36 PIIE1 PIIE2
jII36 jII66 MIIE1 MIIE2

DII3rðriÞ DII6rðriÞ DIIE1rðriÞ DIIE2rðriÞ
DII3rðroÞ DII6rðroÞ DIIE1rðroÞ DIIE2rðroÞ

2
6664

3
7775

aI3
aI6
cI1
cI2

8>>><
>>>:

9>>>=
>>>;
: ð61Þ
6.5. Validation example for problem II

We shall analyze a homogeneous circular cylinder with the same geometry used for the validation

problem earlier. However, we will use a crystal orientation angle H ¼ 90� in this example. 2 Thus, the

elastic stiffness moduli (in Pascals) are given as, c11 ¼ c22 ¼ 127� 109, c33 ¼ 117� 109,

c44 ¼ c55 ¼ 23:0� 109, c66 ¼ 23:5� 109, c12 ¼ 80:2� 109, c13 ¼ c23 ¼ 84:7� 109; the piezoelectric moduli

(in Coulomb/m2) are given as e11 ¼ e22 ¼ e33 ¼ 1:5� 10�8; and the dielectric permittivity constants (in

Farad/m) are given as �13 ¼ �23 ¼ �6:1, �33 ¼ 15:7.
The cylinder is subjected to uniform outside circumferential shear tractions, �rho ¼ 1:0 Pa; uniform

outside axial shear tractions, �rzo ¼ 1:0 Pa; linearly varying outside surface voltage and pressure distribu-
tions with D/o ¼ 5 V/L, and Drro ¼ 5 Pa/L. Thus, for example, the outside pressure is �rro ¼ 0 at z ¼ 0, and
�rro ¼ 100 at z ¼ L. To the best of the authors’ knowledge, analytical solutions of these problems do not

exist. So the semi-analytic results are compared with those obtained with the finite element method

(ANSYS, 1998). The variation of the stresses, displacements and potential through the thickness of the

cylinder, normalized with their respective maximum values, as computed via the two methods are displayed

in Fig. 5. The agreement between these two results are, again, quite good.

Note that, the comparisons in this problem are made at the mid-length of the cylinder, away from the

two ends where the end-effects are observed. The treatment of the end-effects is possible with the semi-
analytic method, and is deferred to a subsequent publication.

Also note that, the free-surface integral of the normal electric displacements defined in Eq. (17) yield the

values of {3.9 · 10�12, 1.1 · 10�9, 1.9 · 10�13, 0.0} Coulombs for the linear pressure, linear potential, uniform

axial and uniform torsional shear problems, respectively. The corresponding largest individual integrated

free-surface fluxes––either of left-face, right-face, interior or exterior surfaces––are {6.1 · 10�8, 2.3 · 10�5,
ote that H ¼ 0� for the first verification problem.



Fig. 5. Validation for Problem II: the results are for uniform circumferential (Row a) and axial (Row b) shear tractions, as well as linear

pressure (Row c) and voltage (Row d) distributions prescribed on the exterior surface of the cylinder. The symbols and the (dashed,

dotted, etc.) lines denote the semi-analytic and ANSYS results at the mid-length of the cylinder, respectively.
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9.2 · 10�8, 0.0} Coulombs, respectively. Again, the total values (which are ideally equal to zero) are roughly
four orders of magnitude smaller than the individual values, thereby validating the consistency of the semi-

analytic method.
7. Problem III––quadratically varying state

The parabolically varying state is governed by Eq. (15.2) whose explicit form is
K1V2 þ K3V2;z � K6V2;zz ¼ F2c0 þ zðF1b þ F2c0Þ þ z2ðF2a þ F2c0Þ: ð62Þ
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7.1. Analysis

The analysis procedure follows the previous strategy. There is a cascading of the generalized coordinates,

warpage functions, particular solutions and electric vectors. As the formulation is parallel to the two
previous problems, we will not dwell on the details unless an issue is clearly new to the discussion of the

analysis.

The most general form of the displacement field for Eq. (62) is obtained by integrating Eq. (43) once with

respect to z. Thus,
V2 ¼ aI3
z3

6
R3

�
þ z2

2
WI3 þ zWII3 þWIII3

�
þ aI6

z3

6
R6

�
þ z2

2
WI6 þ aWII6 þWIII6

�

þ aII3
z2

2
R3

�
þ zWI3 þWII3

�
þ aII6

z2

2
R6

�
þ zWI6 þWII6

�
þ aIII3ðzR3 þWI3Þ þ aIII6ðzR6 þWI6Þ

þ z2

2
UIIIP1 þ zUIIIP2 þUIIIP3 þ

X
a

cIa
z2

2
UIEa

��
þ zUIIEa þUIIIEa

�
þ cIIaðzUIEa þUIIEaÞ þ cIIIaUIEa

�

þURBaRB; ð63Þ
where ðaIi; aIIi; aIIIi; cIi; cIIi; cIIIi; i ¼ 3; 6Þ are generalized deformation coordinates. Substituting Eq. (62) into

(15.2) leads to all of the defining equations, among which those for WIII3, WIII6, UIIIPi, i ¼ 1, 2, 3 and UIIIEa,

a ¼ 1, 2 are new. These are determined by solving the following equations
K1WIII3 þ K3WII3 � K6WI3 ¼ 0; K1WIII6 þ K3WII6 � K6WI6 ¼ 0; ð64Þ

K1UIIIP1 � 2F2a1 ¼ 0; K1UIIIP2 þ K3UIIIP1 � F1b1 ¼ 0; K1UIIIP3 þ K3UIIIP2 � K6UIIIP1 ¼ 0; ð65Þ

K1UIIIEa þ K3UIIEa � K6UIEa ¼ 0 ða ¼ 1; 2Þ: ð66Þ
The quadratic stress and electric displacement field for this case is
Q ¼ z2

2
C�½aI3ðbrWI3 þ bzr3Þ þ aI6ðbrWI6 þ bzr6Þ þ brUIIIP1� þ zC�½aI3ðbrWII3 þ bzWI3Þ

þ aI6ðbrWII6 þ bzWI6Þ þ aII3ðbrWI3 þ bzr3Þ þ aII6ðbrWI6 þ bzr6Þ þ brUIIIP2 þ bzUIIIP1�

þ C�½aI3ðbrWIII3 þ bzWII3Þ þ aI6ðbrWIII6 þ bzWII6Þ þ aII3ðbrWII3 þ bzWI3Þ þ aII6ðbrWII6 þ bzWI6Þ

þ aIII3ðbrWI3 þ bzr3Þ þ aIII6ðbrWI6 þ bzr6Þ þ brUIIIP3 þ bzUIIIP2� þ
z2

2
C�
X2
a¼1

cIabrUIEa

þ zC�
X2
a¼1

½cIaðbrUIIEa þ bzUIEaÞ þ cIIabrUIEa�

þ C�
X2
a¼1

½cIaðbrUIIIEa þ bzUIIEaÞ þ cIIaðbrUIIEa þ bzUIEaÞ þ cIIIabrUIEa�: ð67Þ
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Integrating rzz and rhz over a generic cross-section according to Eq. (16) yields
PzðzÞ
MzðzÞ

� �
¼ z2

2

jI33 jI36

jI36 jI66

� �
aI3
aI6

� ��
þ

PIIIP1
MIIIP1

� ��
þ z

jII33 jII36

jII36 jII66
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� ��
þ
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þ
PIIIP2
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þ

jI33 jI36
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þ
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jII36 jII66
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� �
þ
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� �

þ
PIIIP3
MIIIP3

� �
þ z2

2

X
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MIEa

� �
þ z
X
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cIa
PIIEa
MIIEa

� �
þ z
X
a

cIIa
PIEa
MIEa

� �

þ
X
a

cIa
PIIIEa
MIIIEa

� �
þ
X
a

cIIa
PIIEa
MIIEa

� �
þ
X
a

cIIIa
PIEa
MIEa

� �
; ð68Þ
where jIIIij’s and the mechanical and electric load resultants have the same formulas as those given by Eqs.

(33)–(35) except with the stresses in these formulas replaced by their corresponding components with the

appropriate subscripts, for example,
jIII33 ¼ 2p
XM
m¼1

Z
rzzIII3rdr;

PIIIPc ¼ 2p
XM
m¼1

Z
rzzðIIIPcÞrdr ðc ¼ 1; 2; 3Þ;

PIIIEa ¼ 2p
XM
m¼1

Z
rzzðEIIIaÞrdr ða ¼ 1; 2Þ:

ð69Þ
Eq. (68) gives axial force Pz and torque Mz at any z in terms of the generalized coordinates. These

coordinates for the quadratically varying field are determined in three stages. The second derivative of Eq.

(68) must be equal to the circumferential integral of the linearly varying applied surface tractions, Pz2 and
Mz2, that possess axial resultants. Thus
o2Pz
oz2

þ Pz2 ¼ 0;
o2Mz

oz2
þMz2 ¼ 0: ð70Þ
Differentiating Eq. (68) twice with respect to the axial coordinate z and enforcing this global equilibrium

condition yields
jI33 jI36

jI36 jI66

� �
aI3
aI6

� �
þ
X2
a¼1

cIa
PIEa
MIEa

� �
þ PIIIP1

MIIIP1

� �
þ Pz2

Mz2

� �
¼ 0: ð71Þ
The first derivative of Eq. (68) evaluated at z ¼ 0 gives the expressions to be equated to the resultants of

the uniformly applied surface tractions with axial resultants. Since such applied tractions were treated in

Problem II, they are omitted here. Therefore
oPz
oz

¼ 0;
oMz

oz
¼ 0: ð72Þ
Carrying out this evaluation by differentiating Eq. (68) gives
jII33 jII36

jII36 jII66

� �
aI3
aI6

� �
þ

jI33 jI36

jI36 jI66

� �
aII3
aII6

� �
þ
X
a

cIa
PIIEa
MIIEa

� �

þ
X
a

cIIa
PIEa
MIEa

� �
þ

PIIIP2
MIIIP2

� �
¼ 0: ð73Þ
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Finally, evaluating Eq. (68) at z ¼ 0 gives the value of Pz and Mz at the tip end. These loads were considered

in Problem I and can be set equal to zero here. Thus, this condition yields
jIII33 jIII36

jIII36 jIII66

� �
aI3
aI6

� �
þ

jII33 jII36

jII36 jII66

� �
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aII6

� �
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þ
X
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MIIIEa
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MIIEa

� �
þ
X
a

cIIIa
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MIEa

� �
þ

PIIIP3
MIIIP3

� �
¼ 0: ð74Þ
Eqs. (71), (73) and (74) must be supplemented by electric surface conditions. These are considered in the

sequel.

7.2. Both surfaces open

For this case, no electric fields are involved; hence cIa ¼ cIIa ¼ cIIIa ¼ 0. Equations (71), (73) and (74)

become
jI33 jI36

jI36 jI66

� �
aI3
aI6

� �
þ PIIIP1

MIIIP1

� �
þ Pz2

Mz2

� �
¼ 0; ð75Þ

jII33 jII36

jII36 jII66

� �
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aI6

� �
þ jI33 jI36

jI36 jI66

� �
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� �
þ PIIIP2

MIIIP2

� �
¼ 0; ð76Þ

jIII33 jIII36
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� �
aI3
aI6

� �
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� �
þ jI33 jI36

jI36 jI66

� �
aIII3
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� �
þ PIIIP3

MIIIP3

� �
¼ 0: ð77Þ
The sequential solutions of these equations yield aI3, aI6, aII3, aII6, aIII3, and aIII6.

7.3. Quadratically varying voltages on both surfaces

Let the inside and outside lateral surfaces have distinct quadratic voltage distributions along z, given by
/iðzÞ ¼
z2

2
D2/i þ zD/i þ �/i; /oðzÞ ¼

z2

2
D2/o þ zD/o þ �/o: ð78Þ
Similar to the discussion in Problem II, application of the boundary conditions via two differentiations of

Eq. (63) and the rearrangement of these results together with Eqs. (71), (73) and (74) give
jI33 jI36 PIE1 PIE2
jI36 jI66 MIE1 MIE2

wI3/ðriÞ wI6/ðriÞ UIE1/ðriÞ UIE2/ðriÞ
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; ð79Þ
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where the prescribed uniform and linear voltages D/i, D/o, /i, and /o were omitted, as they have already

been considered in Problems I and II. Also note that, the system matrices in Eqs. (79) and (80) are identical

to those of Problem II in Eqs. (56) and (57), so they need not be recomputed. The sequential solutions

of Eqs. (79)–(81) yield the complete set of generalized deformation coordinates ðaIi; aIIi; aIIIi;
i ¼ f3; 6g; cIj; cIIj; cIIIj; j ¼ f1; 2gÞ of V2.
7.4. Quadratically varying electric displacement on both surfaces

Let the inside and outside lateral surfaces have distinct quadratic voltage distributions along z, given by
DriðzÞ ¼
z2

2
D2Dri þ zDDri þ Dri ; DroðzÞ ¼

z2

2
D2Dro þ zDDro þ Dro : ð82Þ
Similar to the discussion in the preceding section, application of the boundary conditions via two differ-

entiations of Eq. (63) and the rearrangement of these results together with Eqs. (71), (73) and (74) give
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where the prescribed uniform and linear voltages DDri , DDro , Dri , and Dro were omitted, as they have already

been considered in Problems I and II. Also note that, the system matrices in Eqs. (83) and (84) are identical

to those of Problem II in Eqs. (59) and (61), so they need not be recomputed. The sequential solutions of

Eqs. (83)–(85) yield the complete set of generalized deformation coordinates ðaIi; aIIi; aIIIi; i ¼ f3; 6g;
cIj; cIIj; cIIIj; j ¼ f1; 2gÞ of V2.

7.5. Validation example for problem III

We shall analyze the same homogeneous circular cylinder used for the validation example for Problem

II. The cylinder is subjected to linearly varying outside circumferential shear tractions, Drho ¼ 1:0 Pa/L;

linearly varying outside axial shear tractions, Drzo ¼ 1:0 Pa/L; and a quadratically varying outside surface

voltage D2/o=2 ¼ 1 V/L. Thus, the outside voltage is �/o ¼ 0 Volts at z ¼ 0, and �/o ¼ 400 Volts at z ¼ L.
Again, analytical solutions of these problems do not exist. So the semi-analytic results are compared with

those obtained via ANSYS (1998). The comparisons of the stresses, displacements and potential through
the thickness of the cylinder, normalized with their respective maximum values, are displayed in Fig. 6. The

agreement between the two sets of results are quite good. Again note that, these comparisons are made at

the mid-length of the cylinder, away from the two ends where the end-effects are observed.

The free-surface integral of the normal electric displacements defined in Eq. (17) yield the values of

{1.1 · 10�10, 1.5 · 10�8, 4.7 · 10�11, 0.0} Coulombs for the quadratic pressure, quadratic potential, linear

axial and linear torsional shear problems, respectively. The corresponding largest individual integrated free-

surface fluxes are {1.2 · 10�5, 3.1 · 10�4, 7.3 · 10�6, 0.0} Coulombs. Again, the total values are roughly four

orders of magnitude smaller than the individual values, thereby validating the consistency of the semi-
analytic method.
8. Numerical examples: actuation and sensing with a homogeneous PZT4 cylinder

Here, we first consider the actuation of PZT4 circular cylinders of various geometry and crystal ori-

entations. The cylinders are polarized axially by a unit voltage acting at the clamped end (z ¼ L) and

grounding at the other end (z ¼ 0). As a consequence, the voltages on the interior and exterior surfaces vary

linearly between the two extreme values. Fig. 7 displays actuated radial, axial and circumferential dis-

placements per unit length of the cylinder as obtained at the radial coordinate r=ri ¼ 1:0, for different

crystal orientation angles H ¼ ½0�; 30�; 60�; 90�� and thickness to inner radius ratios t=ri ¼ ½10; 1:0; 0:1; 0:01�.
The cylinder is not actuated axially or radially for the orientation H ¼ 90�, but the same orientation yields



Fig. 7. Actuation example: the variation of radial, rotational and axial displacements ður; uh; uzÞ per unit length of an axially polarized

PZT4 circular cylinder depending on the crystal orientation angle (H) and the logarithm of the thickness to inner radius ratio (t=ri).
Note that H ¼ 0� corresponds to the properties given in Table 1.

Fig. 6. Validation for Problem III: the results are for linear circumferential (Row a) and axial (Row b) shear tractions, and qua-

dratically varying voltages (Row c) prescribed on the exterior surface of the cylinder. The symbols and the (dashed, dotted, etc.) lines

denote the semi-analytic and ANSYS results at the mid-length of the cylinder, respectively.
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the largest actuation in the circumferential direction. The reverse effect is observed for H ¼ 0�. It is also
noted that for a radially polarized cylinder, the thickness to radius ratio does not play a significant role in

radial and axial actuation, if at all. On the other hand, thin cylinders generally appear to yield a larger

circumferential actuation than the thicker ones.



Fig. 8. Sensing example: the variation of electric potential difference between the inside and the outside surfaces h/i of a PZT4 circular

cylinder depending on the crystal orientation angle (H) and the logarithm of the thickness to inner radius ratio (t=ri) under (a) linearly
varying pressure, (b) uniform torsional, and (c) uniform axial shear tractions.
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The second example involves the sensing of various mechanical surface tractions. Here, we define the

difference of inside and outside electric potentials as, h/i ¼ j/i � /oj. In all the problems analyzed, this

quantity is uniform along the axial direction and its magnitude can be measured to quantify the surface

tractions acting on the cylinder. Fig. 8 displays the electric potential differences h/i between the inside and

outside surfaces for three different loading cases: (a) linearly varying pressure and (b) uniform torsional and

(c) axial shear tractions, all acting on the outside surface. It is observed that the thin cylinders do not record

a significant electric potential difference for any of the three loading cases. It is also observed that for
sensing linear pressure, and uniform torsional and axial shears, the optimum crystal angles are 60�, 0�, and
90�, respectively. The fact that these modes of sensing are out-of-phase can be exploited through the use of

multilayered systems in order to develop bimodal or trimodal sensors.
9. Conclusions

A semi-analytical finite method has been presented for analysis of laminated piezoelectric circular cyl-

inders under axisymmetric loads. This method relies on finite element discretization over the thickness of
the cylinder and analytical determination of the electromechanical fields along the other dimensions. Such

an approach provides significant computational savings over fully-discrete numerical methods. The analysis

is based on a statement of the form of the kinematic field in the axial direction that is associated with a

particular stress and electric displacement state. Three such states were considered, i.e., uniform, linearly

varying and quadratically varying in the z-direction. The generalized coordinates for each kinematic field

are determined by consideration of the mechanical and electrical loads prescribed on the lateral surface and

the ends of the circular cylinder. While each of the states with a particular variation of stress and electric

displacement field was treated separately (i.e., uniform, linear, quadratic, etc.), it is noted that the overall
response could have been solved in one step, rather than the three contained in this paper. That which was

presented here was intended to add more clarity to the total solution procedure. A one-step solution will

nevertheless require data from all of the various steps corresponding to each particular variation of the

stress and electric displacement. With the details given for these three states, the extensions to higher-order

axially varying states are apparent. It follows that, by a proper superposition procedure, it is possible to

obtain solutions under arbitrary (axisymmetric) boundary conditions.

Comparison of present results with known analytical solutions and with three-dimensional finite element

results ANSYS (1998) affirms the validity of this method of solution. The provided application example
illustrates the sensing and activation features in piezoelectric cylinders with circular symmetry.
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Since the analysis is predicated on the relaxed formulation of an equivalent Saint-Venant and Almansi-

Michell problem for a circular piezoelectric cylinder, arbitrary point-wise specification of the end conditions

cannot be accommodated. Rather, only integral conditions are admissible. To treat arbitrary end condi-

tions, a quantitative analysis of Saint-Venant’s principle is needed. This subject will be treated in a sub-
sequent study.
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