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Abstract

A semi-analytical finite element method is presented for analyzing the behavior of a laminated circular piezoelectric
cylinder under axisymmetric mechanical and electric loads. In this computationally efficient method, discretization
occurs in the thickness direction so that any number of layers with distinct material properties and thicknesses can be
accommodated. One end of this cylinder is assumed to be clamped and the other end is free. The mechanical loads
include axial force, torque, any distribution of pressure, longitudinal and circumferential surface shears, as long as they
can be represented by a power series in the axial coordinate. Electric loadings include voltage differences through the
thicknesses as well as voltage or surface charge distributions along the axis of the cylinder. Herein, loading conditions
leading to uniform, linearly and quadratically varying stress and electric displacement fields are considered. From the
discussion of these cases, the extension of the method to higher order axial variations of the loads will be apparent. This
problem and its solution procedure can be considered as an extension of Saint-Venant and Almansi-Michell problems
for elastic bodies to piezoelectric bodies. A number of verification examples are given where it can be seen that the
present results compare extremely well with known analytical solutions for a homogeneous cylinder and with numerical
results obtained via three-dimensional finite element analyses. In addition, an example problem on actuation and
sensing is provided to demonstrate the utility of the present technique for evaluating designs of this type of smart
structures.
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1. Introduction

Many applications have exploited the piezoelectric effect, including those in the fields of communica-
tions, hydro-acoustics, electro-optics and transducer technologies. Much of this technology is well known
and familiar, and dwelling further on the virtues of the piezoelectric coupling phenomenon is not necessary.
More recently, there has been an upsurge of activity in the development of smart or adaptive structures,
wherein these materials provide the means for sensing and actuation in passive and active control of
structural behavior. This paper is devoted to the quasi-static analysis of a circular piezoelectric cylinder
under general axisymmetric mechanical and electrical loads. The method of analysis described here pro-
vides solutions so that the coupled behavior can be clearly evaluated. An enlightened understanding of the
piezoelectric coupling behavior in such cylinders will enable designs that can enhance their sensing and
actuation functions.

The circular cylinder under consideration may be composed of any number of perfectly bonded layers,
each of a uniform thickness with distinct cylindrical piezoelectric properties. The analysis is based on linear
three-dimensional theory and semi-analytical finite elements where the discretization occurs over the
thickness of the cylinder. The formulation leads to a system of second-order ordinary differential equations
governing the nodal variables of the finite element model. While the axisymmetric loading may be general
along the length of the cylinder, its representation must be in polynomial form of the axial coordinate z. The
stress and electric displacement states resulting from these load components will in turn exhibit behaviors of
polynomial form, beginning with the axially uniform state, followed by states that vary linearly, qua-
dratically, etc. The general analysis scheme is first set forth. This is followed by detailed studies of the first
three polynomial terms of the axisymmetric load representation. In each case, the displacement and po-
tential fields in the axial direction is postulated at the outset, but the thickness distribution is left
unspecified. Based on this representation of the fields, a planar problem for the behavior in a generic cross-
section can be posed whose solution defines the functional form of the displacement field and voltage over
the thickness of the cylinder. Then, by imposing end conditions, lateral surface electric conditions, and
global equilibrium, it is possible to determine the generalized coordinates which are the amplitudes of the
displacement and the electric (potential) fields. From the discussion of these three load terms, the solution
form for the higher order polynomial loading terms will be apparent. The problem statement and solution
technique is an extension of the relaxed formulation of the Saint-Venant and Almansi-Michell problems for
prismatic elastic cylinders. Within the framework of this type of analysis, end tractions cannot be prescribed
on a point-wise basis but must be given in terms of integrals of these tractions.

A review of literature on the analysis of prismatic piezoelectric structures under quasi-static mechanical
and electrical loads from the viewpoint of the Saint-Venant and Almansi-Michell problems shows the
papers of Iesan (1987), Batra and Yang (1995), Davi (1996), Bisegna (1998), Ma et al. (2001), Tarn (2002)
and Galic and Horgan (2002, 2003) to be relevant. Those of Ma et al. (2001), Tarn (2002) and Galic and
Horgan (2002, 2003), are especially pertinent as they consider circular piezoelectric cylinders under gen-
eralized plane strain conditions. Validation of the computer code, developed for determining numerical
results with the semi-analytical method, was achieved through comparisons with analytical results of these
authors as well as those obtained through a proprietary finite element analysis package (ANSYS, 1998).
The analytical and numerical methods for circular piezoelectric cylinders had their antecedence in purely
mechanical problems involving circular anisotropic cylinders. Many references on such problems are cited
by Ma et al. (2001) and Tarn (2002) (viz., Ting, 1996, 1999). In this respect, the numerical analysis pro-
cedure presented here is an extension of that developed by Huang and Dong (2001) for laminated,
anisotropic, circular cylinders.

In the following two sections, we set forth the governing equations and general solution strategy. Then,
the problems of mechanical and electrical loadings leading to axially uniform, linear, and quadratic stress
states are considered together with examples. Lastly, some concluding remarks are provided.
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2. Summary of governing equations

Consider a laminated piezoelectric cylinder of length L as shown in Fig. 1, where one end is restrained
and the other end is free (clamped end is at z = L and the tip is at z = 0). The thickness profile may consist
of any number of perfectly bonded layers, each possessing distinct thickness and linear piezoelectric
properties. We adopt cylindrical coordinates (r, 0,z) with the origin located at the center on the tip end
cross-section and the z-axis running toward the clamped end.

The primary dependent variables are the components of the mechanical displacement u = [u,v,w]",
stress 6 = [0, 6o, Oz, Opz, Oy, O',g]T, strain & = [&,, &0, &2z, €025 &z, Srg]T, electric displacement D = [D,,DH,DZ]T
and electric field E = [E,, E,, EZ]T. It is convenient in our solution procedure to concatenate the mechanical
and electrical variables as

(i), o-fa) {3

For a given laminate of the piezoelectric cylinder, the constitutive relation is

Q=CYq, where C'= LCT —Ee]. 2)

In addition, there are generalized strain-displacement relations of the form
1 T
4= 21} = |5(Vu+ V) - ) ®)

where ¢ is the electric potential (voltage). The governing equations are based on a semi-analytical finite
element formulation, where the discretization occurs in the thickness direction of the cylinder by constant
thickness layers, each capable of enjoying distinct piezoelectric properties and thickness. This method of
formulation was used by Siao et al. (1994), who derived discrete equations of motion for the study of
mechanical vibrations and waves in circular piezoelectric cylinders. Here, the elastostatic form of these
equations are used. Since much of the details of such a semi-analytical finite element formulation are given
in Siao et al. (1994), only the essence of the method is provided here.

In this version of the semi-analytical finite element formulation, the dependencies in the axial and cir-
cumferential directions is left undetermined at the outset, but finite element modeling is used for the radial
behavior in the form of three-node cylindrical laminas with quadratic interpolations. This kinematic field
on the element level is written as

Fig. 1. Problem geometry and the coordinate system.
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u(r,0,z) n(r) - . ) u(0,z)
v(r,0,z) _ . n(r) . . v(0,z)
W(I”, H? Z) B . . n(r) . W(Q’ Z) (4)
¢(F, 072) : . . n(r) ¢(f)7z)

where (u,v,w, ¢) are arrays of the four nodal values of the displacement and electric potential fields for a
given element. According to this strategy, the operator ¥ in Eq. (3) should be partitioned into sub-
operators with differentiations with respect to r, 6, z. To wit,

L{v =%+ Lo+ LV} (5)
Substitution of Eq. (4) into Eq. (5) gives
q = byv+byvg + by, (6)

where (b;,b,,b;) are strain-transformation matrices. Hence the element kinetic quantities are
Q =C [b]V + bovy + b3Vz]. (7)

The theorem of minimum potential energy, where an electric enthalpy function due to Tiersten (1969)
serves as the Lagrangian integrand, is used to derive the governing kinematic equations of equilibrium in
the form

K]V + KzV,e =+ K3V$Z — K4V799 — KSVﬁz — K6V,zz = F(O,Z) (8)

where F(6,z) is the assembled consistent load vector for applied surface tractions, electrical inputs, and the
body forces; and V(6,z) is the assembled array of nodal displacements and electric potentials

V(0,2)=[U,V, W, " (9)

The details of the stiffness matrices in Eq. (8) may be found in Siao et al. (1994), where it was shown that K,
K, K5, and K¢ are symmetric, while K,, and K; are antisymmetric. For a finite element model consisting of
N nodes, each component, U, V, W or ¢ in V is N-dimensional, so that each stiffness matrix K; will be of
size (4N x 4N).

Herein, we are concerned with loading conditions on the cylinder by tractions and electrical loadings on
its lateral surfaces, and by body forces that are axisymmetric only, so that V = V(z) and Eq. (8) reduces to

K\V+KV, - KV.. =F(2). (10)

3. General solution strategy

In our analysis procedure, the axisymmetric load F(z) must be expressed as polynomials of z. To wit
F(z) =F) +zF, + 22Fy + - -+ 2'F, + - + Fo(2) + Fio(2) + Foe(2) + - + Fre(2) + - - (11)
On the tip end, axial and torsional shear tractions may occur. Electrical inputs may be imposed on both the

tip and root ends. Each polynomial term F; pertaining to the mechanical loads and body forces in Eq. (11)
can be separated into two parts

Fk:Fka+Fkb (k:071727"'>7 (12)

where Fy, accounts for these loads which are void of any resultant force or moment in the z-direction, while
F;;, allows for such resultants. Examples of F, are uniform external and internal pressures, and centrifugal
forces (w?r loads), F, contains the nodal values of linear variations of these loads. Examples of Fy, are
uniform axial and circumferential surface shear tractions and axial body force, and F;, represents the linear



E. Taciroglu et al. | International Journal of Solids and Structures 41 (2004) 5185-5208 5189

variations of them. In addition, Each polynomial term F.(z) pertaining to the electric loads can be written
as

Fj (Z) = ch() +2ch1 +22ch2 + - +ZJFJCJ (13)

Load vectors F., are intended for a potential difference between the inner and outer lateral surfaces that is
uniform in z, F;, for linear variations of this potential differences, F,, for quadratic variations, etc. In
general, these forces are not known a priori as their values arise not only from direct electric input, but also
from the mechanical behavior through piezoelectric coupling.

The solution to Eq. (10) with loads in the form of Eq. (11) can be stated in series form as

V(@) =Vo(@) + Vi) + -+ Vilz) + -, (14)

where each component V,(z) represents a particular axial variation of the piezoelectric state, i.e., Vy(z)
represents a uniform state, V,(z) a linear state, etc. Substituting Egs. (11) and (14) into Eq. (10) yields an
equation, which can be separated into following systems of equations:

K Vo + K3V, — K¢Vo.. = Fo, + Foco, (0)
KV + K5V, —KeVi.. =Fo, + Fio + 2(Fi, + Fi), (1) (1s)
5

KiVi + K3V — KgVy .. = ZkilF(k—l)b + 2'Fiy + Froo + 2Fi1 + -+ + ZFpre. (k)

This grouping is predicated on a particular loading condition inducing a corresponding axially varying
piezoelectric state. As they shall be referred in the sequel as Problem I, Problem II, etc., respectively,
problem (15.0) involves a uniform stress and electric displacement state in z, problem (15.1) a linear state in
z, etc. (see, Fig. 2). The analysis of these equations is pursued by sequentially solving for V,, Vi, etc.

Prescribed end conditions must be given for every equation in (15). Since a relaxed formulation is
presumed, the end conditions need only to be met on an integral basis in terms of the resultants of tractions
and electric displacement. The resultants over a cross-section at any station z along the length of this
cylinder are given by the integrals

P(z) = Zn/ 0. (z)rdr, M.(z) = 2n/ oo-(2)r* dr;
(16)
D.(z) = 271:/ D.(z)rdr.
If a solution yields end stress distributions a.., g4, and ¢,. and electric displacement D, that differ from the
conditions on a point-wise basis, this difference is a self-equilibrated state whose effect is confined to a
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Fig. 2. Sequential problems involving surface tractions and electric loads expressed as polynomials. Problems II and beyond are known
as the Almansi-Michell extensions of Saint-Venant’s problem.
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region near the end according to Saint-Venant’s Principle. Means to account for the quantitative manner in
which such self-equilibrated states decay into the interior will be addressed in a companion paper.

Global equilibrium must be satisfied by the loads acting on the entire cylinder or on any part of it. These
conditions are enforced in the process of the solution. In addition, if there are no electric charges generated
or annihilated within the cylinder, then the integral of the outward electric displacement component over
the cylinder’s entire exterior surface must be zero, i.e.,

/D-nds:O, (17)
P

where D is the electric displacement, n the unit outward normal to the cylinder, and 2 the exterior surface,
which includes the lateral surfaces and the two ends. This conservation requirement is not used in the
solution procedure, but it provides an a posteriori consistency check of the results. All of our numerical
results will undergo this validation.

4. Solution preliminaries

In the sequential treatment of the series of Eq. (15), the solution vector V, at a given step will depend on
data from previous steps, i.e., V,_1, Vi_s, ..., Vy. According to Iesan’s (1986) method, the appropriate field
for a given step is obtained by integrating the solution vector of the previous step once with respect to z. The
form of Vy—considered in the first step in this procedure—is obtained by integrating rigid body dis-
placements once with respect to z. For axisymmetry, two such rigid body motions are relevant, i.e., axial
translation and rotation about the z-axis. Thus, the rigid body motions may be stated as

Vrp = @rpags, (18)
where agg is an array of amplitudes of each rigid body component and ®@gp is a (4N x 2) matrix of the two
rigid body kinematic distributions in r given by

T
agp = [Wo, @]

R; =[0,0,1,0)" (19)
(DRB = [R37 RG]

where {Re —[0.R.0, O]T

with column vectors I and R containing N unit entries and the r-coordinates of the N nodes, respectively.
Rigid body displacement field Vgg when substituted into the homogeneous form of Eq. (10) gives
K,R; =0, K,R;=0. (20)

On the element level, these rigid body components, denoted by lower case symbols, yield null values
when substituted strain-displacement relationships in Eq. (3), i.e.,

br; =0, brxs=0. (21)

It is noted that there is also a rigid body electrical term in the form of a constant potential in the form

Vi = Rsay, where R; =1[0,0,0,1]", (22)
which satisfies

K/R; =0. (23)

This electrical mode can be added to any solution without affecting any of the stresses or electric dis-
placements. Expressions (20), (21) and (23) are useful identities in our subsequent discussion.
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5. Problem I—uniform state

A uniform state is governed by Eq. (15.0); reproduced here as
K Vo + K3V, — KeVo.. = Fo, + Foeo. (24)

The components of the load vectors on the right-hand side are illustrated in Fig. 3. The mechanical loads
must exhibit no resultant axial force or torque. For uniform pressures, say 6,; and ,, on the inner and outer
surfaces, r; and r,, respectively, their consistent load components are 2nr6,; and —2nr,6,,, and obviously
they have no axial resultants. For axial and circumferential surface shear tractions, say (6., d.,) and
(Goi, G9o) On the inside and outside surfaces, self-equilibrium of these two traction pairs require that

G271y = G.,2nr, and 6(11271132 = 6002711%. (25)

For prescribed inside and outside charges (D,.,D,,), the electrical load vector F,. will have consistent
charge terms (2nr.D,,, 2nr,D,, ). If voltages are prescribed instead, say ¢; and ¢, the resulting solution will
yield a distribution of D, over the thickness. For an admissible electrostatic solution, the total charges over
the cylinder’s exterior surfaces must be conserved, whether they are prescribed or computed. This con-
servation principle requires that D, and D, must obey

D, 2nr; = D, 2nr,. (26)
At the tip end z = 0, an axial force P, and torque M, may be applied. Within the framework of a Saint-

Venant solution, the restraint at the clamped end involves some fixity condition. Therefore, the present
solution will be unique only within a rigid body displacement.

5.1. Analysis

The most general form of the kinematic field for Eq. (24) is
Vo = ap(zRs + ¥i3) + ais(zRs + Wi6) + Urp + Z c1.Utg, + @rpagrs. (27)

=1

DD DD D D §,orD, R e

® ® 0006

o O O D D D

22222

O DDDDD
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Fig. 3. Surface tractions, electric potential, and electric displacements considered in Problem I. Axial and circumferential surface
tractions must be self-equilibrated. This requirement is removed for higher-order problems.
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The first two terms with generalized coordinates ay; and aj relate to extension and torsion, where
(zR3,zR¢) and (W3, Wie) represent the primal behavior and cross-sectional warpages, respectively, and Uyp
represents the particular solution for mechanical loads Fy,. The series Ujg, with amplitudes cy, represent the
response to electric loading Fy.. The number of terms is a function of the number of cylindrical surfaces
with prescribed electric conditions. Herein, two will be used, for inside and outside surface electric con-
ditions. Lastly, ®rpagp is a rigid body displacement whose values depend on the restraint conditions at the
root end of the cylinder. This kinematic field can be obtained by integrating rigid body displacement (18)
once with respect to z. Substitution of Eq. (27) into Eq. (24) gives

zlapKRs + ai6K Rg] + a3 {K|¥; + K3R3} + a16{K; ¥ + KiRg } + [K Up — Fy,
2
+ Z{CIaKIUlEa} —Foo | =0. (28)
a=1

To satisfy Eq. (28), each square bracketed term must vanish. Those multiplied by z vanish due to the
identities presented in Eq. (20). The warpages (W3, W) and the particular solution Uy are determined by

KI‘PB = _K3R37 Kl\lllé = _K3R67 I(IUIP = FOa- (29)
Electric load vector Fy is not known a priori, as it depends on the lateral surface electric conditions,
which are composed of all terms in V. Hence, ¢1,Ujg,’s cannot be determined. However, we can let Uyg, be

the response to a unit electric charge or flux on a cylindrical surface » = r,. Denoting this load vector by
foex, Which only contains a unit charge in the appropriate degree of freedom; then Uz, satisfies

KIU]Ex - fOcot (OC = 1) 2) (30)

To invert Egs. (29) and (30), kinematic restraints must be imposed to preclude rigid body motions. With
respect to the potential ¢, the problem involves the grounding of a surface. Thus, for a unit outside surface
charge, the inside surface is grounded, and for a unit inside surface charge, the outside surface is grounded.

After determining these distributions, the nodal stress and electric displacement distributions Q can be
constructed as

2
Q = apC’(b,¥13 + b.r3) + a;6C" (b, Wi + b.rs) + C'b,Ujp + C* (Z ClxerIEx> . (31)
=1

The integrals of ¢.. and gy, over any generic cross-section according to Eq. (16) gives

2
P. Kis Ko | ) an Pip P,

- + + Cly ) 32

{Mz} |:KI36 K166:|{a16} {MIP} Z ! {MIEa} (32)

o=1

where y;, (i,/ = 3,6) are the cross-sectional stiffness influence coefficients given by

M M
2
K33 = 271 E /Uzzl3rdra Kige = 27 E /06216’” dr

m=1 m=1 (33)

M M
K13 = 2n E /azzlﬁrdr =2n E /0'92137"2(1}"
m=1

m=1

and Pp, Mip, Pig,, and Myg, denote the resultants of the particular solutions for mechanical and electrical
loads

M M .
PIP = 271?2 /GZZ(IP)I"dI", MIP = 27‘52 / GHZ(IP)I"Z dr, (34)
m=1 m=1
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M M
P, = 27?2 -/O-zz(Elaz)rdra Mg, = 27'52 /fi'()z(Em)”2 dr. (35)
m=1 m=1

Since the stress and electric displacement states are uniform in z, P, and M, in Eq.(32) must represent the
applied force and torque at the tip end.

Recapitulating, all terms in Eq. (32) are known except for coefficients a3, ag, ¢;p and c¢p. They are
dependent upon the applied force and torque, P, and M. and electric surface conditions. A number of
electric surface conditions are possible. Four will be considered in the sequel.

5.2. Both surfaces open

In this case, called the open circuit condition, there is no specification of lateral surface electric conditions
so that there is no need for the terms ¢, Uz, in displacement field Eq. (27). Coefficients a;; and aj are
determined by

K33 Kie | ) an P.—Pp
= . 36
[KI36 KI66:|{GIG} {MZ_MIP} (36)
5.3. Prescribed voltages on both surfaces

If voltages (¢;, ¢, ), respectively, are prescribed on the inside and outside surfaces, these conditions are
. 1
given by

Yz (ri)an + Yy (ri)ats + Utgip(ri)en + Utpag (ri) e + Uipg (i) = ¢,

j (37)
Y13 (ro)an + gy (ro)ats + Utgip(ro)en + Utpag(ro)en + Utpg (7o) = @,
Casting these conditions together with those of Eq. (32) into matrix form yields
K133 K136 P P> an P.—Pp
K136 Kie6 Mg, Mg ae \ _ ) M. — My (38)
lplw(”i) lpl6¢(ri) UIEId:(”i) Uty (11) 1 ff)i - UIP(/)(ri)
%34)(”0) ‘//Isqs(ro) UIEI«#(”O) UIE2¢(”o) n ¢o — UIP¢(”O)
If ¢; = ¢, = 0, the solution for a3, ag, ¢y and ¢y, define a short-circuited condition.
5.4. Prescribed electric displacements
If D,(r;) and D,(r,) are prescribed electric charges on the inside and outside surfaces, then
Dy (ri)ars + Die(ri)ars + Digi,(ri)en + Digar(ri)err + Dip (1) = D, (39)
Dy3,(ro)ars + Die(ro)ats + Digi,(ro)en + Diga(ro)crr + Dip(ro) = Dy,
The coefficients a3, ag, ¢y and ¢y, are determined by
K133 K136 P Py an P.— Pp
K136 K166 Mg, Mg ag \ _ ) M:—Myp (40)
Dy, (ri)  Die(ri)  Dipi(ri)  Duar(ri) | ] cn Dy, — Dip (1)
Dy (ry) Digr(ro) Digir(ro) Dipa(7o) cn D,, — Dip.(r5)

! Subscripts (i, v, w, ¢) will be used with displacement vectors V13, V16> Uler, ete. to designate the corresponding components in these
vectors. An expression in parenthesis, for example (r;) in 13, (ri), denotes the nodal location of the given component.
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5.5. Mixed electric conditions

Suppose an electric displacement D, (r;) is prescribed on the inside surface and potential ¢, is given on
the outside surface, then equations for the coefficients take the form

K133 K136 Pigi Pk ap P.— Pp

K136 K166 Mg Mgy as | _ _Mz — Mp (a1
Du.(ri)  Dig(ri) Digi(ri)  Diga(ri) cr D,, — Dip(r;)
Yisp(ro)  Wiep(ro)  Uterg(ro)  Utpag(ro) cn by — Uipy (7o)

5.6. Validation example for problem I

We shall analyze a homogeneous circular cylinder with a length to thickness ratio L/t = 20, and with
inner and outer radii to thickness ratios r; /¢ = 1.0, r, /¢t = 2.0. The cylinder is made of PZT4 material (lead—
zirconium-titanate), which is a widely used piezoceramic in actuator/sensor technology. The material
constants for PZT4 are displayed in Table 1 (see, for example, Berlincourt et al., 1964).

The cylinder is subjected to uniform and resultant-free loads. To wit, the applied loads are uniform
circumferential shear tractions, g = 4.0 Pa, 6y, = 1.0 Pa; uniform axial shear tractions, ,; = 2.0 Pa,
7., = 1.0 Pa; uniform outside surface voltage ¢, = 100 V, and internal pressure &,; = 100 Pa. The variation
of the normalized stresses, displacements and potential through the thickness of the cylinder as computed
via the semi-analytic method proposed here and exact solutions by Tarn (2002) are displayed in Fig. 4. The
agreement between these two results are remarkable. Furthermore, the total free-surface integral of the
normal electric displacements defined in Eq. (17) yield the values of {0.0, 1.1x107%, 6.1x107'2, 0.0}
Coulombs for the uniform pressure, uniform potential, self-equilibrated axial and self-equilibrated tor-
sional shear problems, respectively. The corresponding largest individual integrated free-surface fluxes—
either of left-face, right-face, interior or exterior surfaces—are {3.1x1077, 2.3x1074 1.2x1077, 0.0}
Coulombs, respectively. Noting that the total values (which are ideally equal to zero) are 4-7 orders of
magnitude smaller than the individual values. These final results validate the consistency (or of the con-
servation of electric charges property) of the semi-analytic method.

Also note that the results displayed in Fig. 4 are normalized with respect to their maximum values. These
maximum values are omitted for brevity as the validation example is only meant to display the veracity of
the semi-analytic approach.

Table 1
Material constants for PZT4 crystal
¢ = 13.90 x 10'° (Pa) e;3 = —5.2028 (C/m?) €11 = 6.4605 x 10~ (F/m)
¢33 = 11.54 x 100 ey = 15.0804 €33 = 5.6198 x 10~°
Cy4 = 2.56 x 1010 e|5 = 12.7179 € = €11
cp =17.78 x 10'° e =en
c13 = 7.43 x 10'° en = es

c4q = 2.56 x 1010
Co6 = 3.06 x 1010
Cn =C11,623 =C13
C55 = Ca4
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Fig. 4. Validation for Problem I: the results are for self-equilibrated circumferential (Row a) and axial (Row b) shear tractions, and
uniform pressure (Row c) and voltage (Row d) distributions prescribed on the exterior surface of the cylinder. The symbols and the
(dashed, dotted, etc.) lines denote the semi-analytic and the exact solutions provided by Tarn (2002), respectively.

6. Problem II—linearly varying state

The linearly varying state is governed by Eq. (15.1); reproduced here as
KiVi + K3V, — K¢V .. = Fop + Fio + z(F1, + Fia). (42)

Consistent load vector F, represents linearly varying pressure distributions, without an axial resultant,
and Fy, represents the uniform axial and circumferential shears with axial force and torque resultants.
Uniform and linearly varying electric loads are contained in Fy, and F,.;, respectively. Note that a uniform
pressure could have been included in Fy,, but pressure as well as self-equilibrated surface axial and cir-
cumferential shears were already taken into account in Fy, of Problem I.
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6.1. Analysis

The most general form of the displacement field for Eq. (42) is obtained by integrating Eq. (24) once with
respect to z, which yields

2

z2 z
Vi=an (2R3 +z¥5;3 + ‘P113> + ais (2R6 + 2% + ‘Pu()) + a3 (zRs + ¥i3) + ane(zRe + Pie)

2
+ zUppt + Unpy + Z[Clzx(ZUIEoz + Ungy) + cnuUtgy] + @rpars, (43)

=1

where ays, ag, c11, ¢, am, aus, ¢ and cypp are the generalized deformation coordinates. In this expression,
W13 and Wy are new warpages, Uypy, Uyp, are particular solutions for the mechanical loads, and Uy and
Uy, are new fields for the electric loading. All other vectors are known from previous considerations.
Coefficients ap3, ayg, ¢11 and ¢, are new and are completely unrelated to the values of Problem 1. Note that
Eq. (43) can be obtained by integrating Eq. (24) once with respect to z. This method of integrating the
previous displacement field for this next level of stress and electric displacement variations follows Iesan’s
method (1987) for Saint-Venant’s problem.

To determine all of the vectors in Eq. (43), we substitute it into Eq. (42) and this leads to three sets of
terms multiplied by z°, z' and z? that contain all of the defining equations. Many of these equations are
repetitions of (the rigid body, etc.) identities in Problem I. The new warpages Wy; and Wy and new
particular solutions for the mechanical loads are determined by

KW + KsWi — KR; =0, KW + K;¥is — KeRg =0, (44)

KIUIIPI - Flal = 07 KIUIIPZ + I(3UIIP1 - FObl = 0. (45)

The first of Eq. (45) yields Uyp;, whereupon the second gives Uypy in which the uniform mechanical loads
and warpages in K3Uyp; drive this solution. The equations for the electric terms are

2
E i KiUig, = Fm,

a=1 (46)
2 2

Z c1(KiUngy + K3Uig,) + Z i KiUigy = Fie.

a=1 =1

As in Problem I, electric load vector F;.; depends upon various sources that may not be known at the
outset, so that Eq. (46) must be treated in the same way as Problem I. Solutions for Uy, give the distri-
butions for unit electric charges on the lateral surfaces, and they are identical to those found in Problem I.
In the second equation, Uz, can be considered to be driven by its corresponding unit solution Ujg,, so that
the appropriate equation for Uy, is

KiUng, + KsUp, =0 (0 =1,2). (47)

After the complete displacement field is established, the explicit forms of F;.; and F;, can then be stated,
but their forms are not essential (i.e. they are not needed for determining the generalized coordinates).

Upon establishing the displacement field distributions, the (stress and electric displacement) vector Q
within an element can be formed through
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Q = zC"[aiz(b, W13 + b.r3) + ais(b, W16 + b.rs) + b.Unpi| + C*[ar3(b, ¥z + b.Wi3)
+ aig(b,Wie + b.Wis) + ans (b, Wiz + b.r3) + ane(b,¥is + b.rs) + b, Unipr + b, Unipi]

2
+C"> [ze1b, Utg, + c12(b,Ung, + b.Usz,) + b, Ure,]. (48)

=1

Integration of o, and gy, over a generic cross-section according to Eq. (16) yields
{ P.(z) } . Z([Km KI36:| {aB } I { Pup }) i [K1133 KII36:| {6113 } I [Km KI36:| { amns }
M.(2) K136  Kieo are Myp Kise  Kiies are K136  Kies are

" {;m } “ZC'“{A};M } - ch“{ o } Z%{ e } (49)

P2 P 1Ex > Mg,

where xy;;’s were defined in Eq. (33) and yy;’s have the same formulas as those for «y;;’s except with 613
and gg,13 replacing o..;3 and oy.3, 1.€., K33 = 27 Zm | f 0.3 dr, etc. Similarly, mechanical load resultants
(Pupi, Mnp, i =1,2) are given by Eq (34) except with o..(up) and oo.qip) replacing o..qp) and og.ap), i.€.,
Pup = ZnZ _ f oupyrdr, etc. Electric resultants Pig, and Mg, were defined by Eq. (35) and
(Pigy, Mgy, o0 = 1 2) are given by the same formula but with o..(z11,) and 6.z, replacing o..(z1,) and 0.z
as in Py, =21 Zm 1 J Oupngyrdr, ete.

Eq. (49) defines P, and M, at any z. They depend on the generalized coordinates, which can be deter-
mined in two stages. First, we invoke global equilibrium by requiring the rate of change of P, and M, to be
equal to resultant external load and torque per unit length, P, and M., of the prescribed axial and cir-
cumferential shears, i.e.,

OP. oM,
= 1 =0 and

Differentiating Eq. (49) and enforcing Eq. (50) yields

K K a P 2 B P,
133 K 13 11p1 \1Ex 1

+ + E Cly + =0. 51
|:KI36 KI66:| { are } {MIIPI } ! {MIIEo( } {le } (51)

a=1

1 =0. (50)

Setting z = 0 in Eq. (49) gives an expression involving P.(0) and M,(0), i.e., the applied axial force and
torque at the tip end, as

Kmss  Kimse | ) an K1z Kise | ) am Pipy \Ex Pigy
+ + ) Cu + ) Cia
[KH% K1166:| { are } |:K136 K166:| { ane } {MIIPZ } Z ! {MIEa } ; ! {MIEa }
_ [ P(0)
_ {MZ(O) } (52)

Such tip-end loads were considered in Problem I, and can be set equal to zero in this calculation. Surface
electric conditions must be appended to these equations before a solution is possible. These conditions are
treated in the sequel.

6.2. Both surfaces open

No electrical terms are needed in V; of Eq. (43), so that Eq. (51) takes the form

ki3 Koe | Jas | _ ] Pupr 4+ Po (53)
Kize  Kies | | @6 Mup +M., |-
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After determining ap; and ay, Eq. (52) is used for finding ay; and age. To wit
K133 K36 ams | _ | Km3 Kise ans Pip (54)
Kize  Kies aiie Kisze  Kies age Mupy |-

6.3. Linearly varying voltages on both surfaces

Let the inside and outside lateral surfaces have distinct linear voltage gradients along z at rates of A¢,
and A¢,. Also, assume that the electric potentials on the inside and outside surfaces at z = 0 are zero. No
generality is lost, since non-zero uniform potentials, ¢; and ¢,, can be taken into account by the super-
position of Problem I. For prescribed potential gradients A¢; and A¢,, the two potential gradient
expressions, obtained through the differentiation of Eq. (43), are

Yiag (r)as + Yy (r)as + Utpig(ri)en + Utgag (ri) e + Unpig (1) = Adh,

o (55)
Yisg(ro)an + g (ro)ats + Uigig(ro)en + Uteag (7o) en + Unpip(ro) = Ad,.
These expressions along with Eq. (51) constitute the four equations for a3, ag, c11, and cpp, given as
K133 K136 P Pip> aps —(Pup1 + Pa)
K136 K166 Mg Mg ai | _ __(MIIPI +M.;) (56)
Wla(/)(’"i) ‘plw(”i) Uieip(ri)  Utiag(ri) cn ﬂi — Unpip(n) [
Yi3p(ro)  Vies(ro)  Uterg(ro)  Utmag(ro) | \ e Ady — Unpiy(rs)

Next, Eq. (52) with ¢, = 0 and d)io = 0in Eq. (43) provides the means for determining ay3, ar, cir1, and cyp.
Thus

K133 K136 P P> am
K136 K166 Mg Mg ane
Yap(ri)  Wep(r)  Uipig(ri)  Uipag(ri) cm
‘//134,(”0) %mp(”o) UlElrﬁ(”o) UlE2¢(”o) Ci2

Pupy K33 K136 Pre P an

_ Miipr _ K136 K1166 Mg Mg are (57)
Unpag (1) Yise(r)  Wuep(r)  Uneg(ri)  Uneag(ri) | ] en
Unipag (7o) Yiss(ro)  Vuep(ro)  Uneip(ro)  Unieag (7o) cn

6.4. Linearly varying electric displacement on both surfaces

Let AD,(r;) and AD,(r,) be prescribed gradients of electric charges on the inside and outside surfaces.
Enforcing this condition with Eq. (48) leads to

Dus,(ri)an + Die-(ri)ais + D (ri)en + Diga(ri)err + Dupi(ri) = AD,,,

_ (58)
D3 (ro)ais + Digr(ro)ais + Digi-(ro)cn + Digar(ro)cra + Dupi(ro) = AD,, .
These relations, together with Eq. (51), give the four equations for ay3, ay, ¢11, and cpp. Thus
K133 K136 Pigy Pig ans —(Pup1 + Pay)
K136 K166 Mg Mg ai | _ —(Mupy + M) (59)
D3 (ri)  Dig(ri)  Digir(ri)  Digar(ri) c A—Dri — Dupi-(ri)

Du3(ry) Digr(ro) Digrr(ro) Dipar (7o) cn AD, — Dypy, (7o)
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The electric displacement D, on the outside and inside surfaces may be assumed to be zero as non-
vanishing values were already considered in Problem I. Evaluating D,, and D, at z=0 by Eq. (48) and
setting them equal to zero yields

D (ri)ars + Due, (ri)are + Dugir(ri)en + Dugar(ri)cro + Dupar(ri) + Dis, (i) ans + Dier(ri)ane
+ Dig1r(ri)emt + Digar(ri)ems = 0,

(60)
Dz, (7o) as + Duer(¥o)ais + Dugi(ro)en + Dugar(7o)cn
+ Dupa(ro) + Disr(ro)aus + Dier(ro)ans + Digi,(Fo)cm + Digar (7o) ez = 0.
Combining these equations with Eq. (52), the equations for a3, ang, ¢ and ¢ are obtained as
K133 K136 P P am
K136 Kies Mg Mg are
Dy (ri)  Dig(ri) Digir(ri)  Digar(ri) i
Dy, (ro) Dier(ro) Digir(ro) Diga(ro) cm
Prp) K133 K136 Pig Pug> an
) Mum | ke K166 Mug Mug ai (61)
Dupy(11) D (ri)  Duer(ri) Dugir(vi)  Dugar(ri) cn
Dupa (7o) Dus (o)  Duer(ro) Dugir(ro)  Dugar(rs) cn

6.5. Validation example for problem II

We shall analyze a homogenecous circular cylinder with the same geometry used for the validation
problem earlier. However, we will use a crystal orientation angle @ = 90° in this example. > Thus, the
elastic stiffness moduli (in Pascals) are given as, ¢y =c» =127 x10°, ¢33 =117 x 10°,
cas = C55 = 23.0 x 10°, g6 = 23.5 x 10°, ¢15 = 80.2 x 10°, ¢35 = c23 = 84.7 x 10°; the piezoelectric moduli
(in Coulomb/m?) are given as e;; = e = es3 = 1.5 x 1078; and the dielectric permittivity constants (in
Farad/m) are given as €3 = €3 = —6.1, €33 = 15.7.

The cylinder is subjected to uniform outside circumferential shear tractions, Gy, = 1.0 Pa; uniform
outside axial shear tractions, 6., = 1.0 Pa; linearly varying outside surface voltage and pressure distribu-
tions with A¢, = 5 V/L, and Ag,, = 5 Pa/L. Thus, for example, the outside pressure is ,, = 0 at z = 0, and
G, = 100 at z = L. To the best of the authors’ knowledge, analytical solutions of these problems do not
exist. So the semi-analytic results are compared with those obtained with the finite element method
(ANSYS, 1998). The variation of the stresses, displacements and potential through the thickness of the
cylinder, normalized with their respective maximum values, as computed via the two methods are displayed
in Fig. 5. The agreement between these two results are, again, quite good.

Note that, the comparisons in this problem are made at the mid-length of the cylinder, away from the
two ends where the end-effects are observed. The treatment of the end-effects is possible with the semi-
analytic method, and is deferred to a subsequent publication.

Also note that, the free-surface integral of the normal electric displacements defined in Eq. (17) yield the
values of {3.9x 10712, 1.1x107°,1.9x 10713, 0.0} Coulombs for the linear pressure, linear potential, uniform
axial and uniform torsional shear problems, respectively. The corresponding largest individual integrated
free-surface fluxes—either of left-face, right-face, interior or exterior surfaces—are {6.1x107%, 2.3x 1073,

2 Note that @ = 0° for the first verification problem.
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dotted, etc.) lines denote the semi-analytic and ANSYS results at the mid-length of the cylinder, respectively.

9.2x107%, 0.0} Coulombs, respectively. Again, the total values (which are ideally equal to zero) are roughly
four orders of magnitude smaller than the individual values, thereby validating the consistency of the semi-

analytic method.

7. Problem III—quadratically varying state

The parabolically varying state is governed by Eq. (15.2) whose explicit form is

KiV> + K3V, — KoV .. = Foo + 2(Fy, + Faop) + Zz(an + Fay).
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7.1. Analysis

The analysis procedure follows the previous strategy. There is a cascading of the generalized coordinates,
warpage functions, particular solutions and electric vectors. As the formulation is parallel to the two
previous problems, we will not dwell on the details unless an issue is clearly new to the discussion of the

analysis.
The most general form of the displacement field for Eq. (62) is obtained by integrating Eq. (43) once with

respect to z. Thus,

pal z? z3 z2
Vo =ap <€R3 + 3‘1'13 +z%¥ms + ll'ms) +axe (ER() + E‘Plé +a¥ne + \P1116>

z2 z?
+ams <5R3 +z¥p; + ‘Pm) + aus (ER() + 2% + l1’116) + a3 (2R3 + ¥i3) + ame (zR6 + Wie)

72 z2
+ SUI]IPI ~+ zUnipz + Unnips + Z |:Cloc <5U15a + zUng, + UIIIEoc) + 110 (ZU1gy + Unigy) + €12 Ugs

+ @rpags, (63)

where (ay;, am, am;, ¢1i, ¢, ¢, § = 3, 6) are generalized deformation coordinates. Substituting Eq. (62) into
(15.2) leads to all of the defining equations, among which those for W3, ¥ins, Umnip, i = 1, 2, 3 and Uyyg,,
o =1, 2 are new. These are determined by solving the following equations

KW + KWz — KeWis =0, K Wi + K3¥ie — K¢Wis = 0, (64)
K\ Uiipt — 2F2, =0, K Upips + KsUpipr — Fi0 =0, KiUppips + KsUppipo — KgUppipr = 0, (65)

KUz, + KsUng, — KgUpg, =0 (2 =1,2). (66)
The quadratic stress and electric displacement field for this case is

)
z
Q= 5 C*laiz(b,¥13 + b.r3) + ai5(b, W16 + b.rs) + b, Umipi| +zC* a3 (b, Wiz + b.¥13)

+ ais(b, W6 + b.Wi) + auz (b, W13 + b.r3) + ane (b, Wi + b.rs) + b, Uips + b.Upppi]
+ C*[aiz (b, W13 + b.Wi3) + ai(b, ¥ine + b. W) + anz (b, Y3 + b, ¥13) + ane (b, ¥ue + b, Wie)

2 2
z
+ anz(b, W13 + b.r3) + ame(b,Wis + b.r6) + b, Unips + b.Unnipo] + 5 cr Z cib, Upg,

=1

2
+zC* Z[Cla(erHEa +b.Uig,) + ciub, Usg,|
a=1

2
+C Z[Cla(erHIEa +b.Unig,) + i (b-Ungy + b.Uig,) + e, Uig,]. (67)

=1
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Integrating .. and a4, over a generic cross-section according to Eq. (16) yields
Pz(Z) z2 K133 Kize ap Piipr Kiz3  Kize ap K133 Kize [41§]
=5 + +z +
M.(z) 2 \ ke Kiee ) Lase Minp Kmse Kies | \ @16 Knie  Kies | \ aus
Puipa K133 Kize anmns Kiz3  Kize ans K3 Kise ap
+ + + +
Minp: Kz  Kiee ape Kize Kiies aiie Kue  Kines axe
Pips } 2 { Pig } { Pig, } { P, }
+ { +5 Q. c +tz) a +tz) cu
Miips 2 Za(: "\ Mg, z@(: “ Mug, Z !
Piig, Puigy PIEW
+ Z Cly{ Z Clly Z Clilu ) (68)

IIIE o IIE o Eo

where «xyy;;’s and the mechanical and electric load resultants have the same formulas as those given by Eqs.
(33)—(35) except with the stresses in these formulas replaced by their corresponding components with the
appropriate subscripts, for example,

M
K3 = 27TZ /O-zzllBrdra
m=1
M
PlllP;' = 27TZ /O-zz(llle)rdr (V = 17 27 3)7 (69)
m=1

M
Prig, = 2712 /azz(EIIIa)rdr (x=1,2).
m=1

Eq. (68) gives axial force P, and torque M. at any z in terms of the generalized coordinates. These
coordinates for the quadratically varying field are determined in three stages. The second derivative of Eq.
(68) must be equal to the circumferential integral of the linearly varying applied surface tractions, P, and
M, that possess axial resultants. Thus

O*P. %M,
22 = O
0z? 0z?
Differentiating Eq. (68) twice with respect to the axial coordinate z and enforcing this global equilibrium
condition yields

K133 Kz P, Pripy Py
_|_ Cly —|— = 0 71
[K136 KI66:| { ae } 2:1: ! {MI Ex } {MIIIPI } {Mzz } 1)

o

+ M, = 0. (70)

The first derivative of Eq. (68) evaluated at z = 0 gives the expressions to be equated to the resultants of
the uniformly applied surface tractions with axial resultants. Since such applied tractions were treated in
Problem II, they are omitted here. Therefore

oP. 0 oM,
oz 0z
Carrying out this evaluation by differentiating Eq. (68) gives

|:K1133 Kll36:| { ans } N {Km KI36:| { am } N Z { Pugs }
Cly
Kime Kiies aje Kpe Kiee amne o Mgy

P, Piipa
Z Mg, Mips

=0. (72)
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Finally, evaluating Eq. (68) at z = 0 gives the value of P, and M, at the tip end. These loads were considered
in Problem I and can be set equal to zero here. Thus, this condition yields

KIII36:| {6113 } n |:KIIS3 KII36:| {am } i [Km K136:| { anmn }
K11166 Aaie Kize  Kiiee aiie Kize Kiee aie

Pigs } { P, P, } { Pip3
+ C1 { + cnn +
; “\ Mg, Z “\ Mug, Mps

[ K11133

K11136

(74)

+ Clily =0.
SERH SO 8 P8 L VHY

Egs. (71), (73) and (74) must be supplemented by electric surface conditions. These are considered in the
sequel.

7.2. Both surfaces open

For this case, no electric fields are involved; hence ¢y, = ¢, = e, = 0. Equations (71), (73) and (74)

become
(ks ke | [ an Pripy P
+ +4 =0 (75)
| K136 Kies | | @16 Minp M,
[ K3z Kize an K133 Kize ans Piip2
+ + =0, (76)
| Kmse  Kues | | @16 Kie  Kies | | ame Mipa
[ K3 Kiise arns Kn3sz  Kise amns K33 Kz ans Prips
+ + + = 0. (77)
| Kise  Kiiies aie Kisze  Kies aie K136 Kies are Mnps

The sequential solutions of these equations yield ay3, ag, ams, amns, amm, and dys.
7.3. Quadratically varying voltages on both surfaces
Let the inside and outside lateral surfaces have distinct quadratic voltage distributions along z, given by
25T o
¢i(z) :EA ¢i+ZA¢i+¢i7 d)o(z) :EA ¢0+2A¢0+¢0' (78)

Similar to the discussion in Problem II, application of the boundary conditions via two differentiations of
Eq. (63) and the rearrangement of these results together with Egs. (71), (73) and (74) give

K133 K136 P P ] (an —(Pip1 + Pa)
K136 K166 Mg, Mg ae | —(Mupy + M) 79
Ynap (1) Yiep(ri)  Unig(ri)  Urag(r1) en () 28%¢; — Unipig (i) (79)
[ Vi3p(ro)  Wies(r0)  Uirrp(ro)  Uteag(ro) | | e 2@0 — Unipig (ro)
[ K33 K136 Pigi P [ ams
K136 K166 Mgy Mg arns
Uiag(r)  Wep(r)  Uieig(ri)  Utpag (1) ci
| Vi3p(To) Y6y (0)  Utzip(re)  Uteag (7o) | | cma
Pripy K133 K1136 Prgy Pugy an
_ M _ K136 K166 Mg Mg are (80)
Uniipag (1) Yise(ri)  Yuep(ri)  Uneio(r)  Unpag(ri) cu [’
Uiipag (7o) ‘pnad)(”o) Wus(p (7o)  Unprg(ro)  Uniag (7o) cn
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K133 K136 Pig P ans
K136 K166 Mg Mg, ame
Uap(r)  Wes(r)  Uipig(ri)  Utpag(ri) e
Yi3p(ro)  Wiep(ro)  Uterg(ro)  Utpag(ro) Crn
Piiips K133 K136 Pugi Pug ans
_ Miups K136 K1166 Mg Mg ane
o Unnipzg (1) ‘/11134)(’”i) me(”i) Ungip(ri)  Unpag(ri) cin
Unipzg (7o) Yisg(ro)  Yuep(ro)  Ungip(ro)  Unpag(ro) iz
K11133 K136 Pug Puig an
B K11136 K11166 Mg Mg arg (81)
Vg (1)  Ymee(r)  Umieig(ri)  Unnigag(73) en |
L Vinsg (o) Yimep(ro)  Umisig(ro)  Umieag(ro) |  cn

where the prescribed uniform and linear voltages A¢g;, Ad,, ¢;, and ¢, were omitted, as they have already
been considered in Problems I and II. Also note that, the system matrices in Eqs. (79) and (80) are identical
to those of Problem II in Egs. (56) and (57), so they need not be recomputed. The sequential solutions
of Egs. (79)-(81) yield the complete set of generalized deformation coordinates (ay,am,am,

i= {3,6},C1j,011j,C1Hj7 _] = {1,2}) Of Vz.
7.4. Quadratically varying electric displacement on both surfaces
Let the inside and outside lateral surfaces have distinct quadratic voltage distributions along z, given by
22 = - o Z2 —— S _
D, (z) = zA D, +zAD, +D,, D, (z)= EA D, +zAD,, + D,,. (82)

Similar to the discussion in the preceding section, application of the boundary conditions via two differ-

entiations of Eq. (63) and the rearrangement of these results together with Egs. (71), (73) and (74) give

—(Puip1 + P)

K133 K136 Pig Py an
K136 K166 Mg Mg ai | —(Muipy + M) (83)
D3 (ri)  Dig(ri)  Digir(ri)  Digar(ri) cn 2AD,, — Dy, (71)
| D13, (7o)  Dier(r0) Digry(ro) Digar(ro) |  en2 2A’D,, — Dyipi,(ro)
[ ki3 K136 P P | ( ams
K136 K166 Mg Mg are
Dy (ri)  Dig(ri) Digpir(ri)  Digar(ri) i
| D13, (7o)  Dier(ro) Digir(ro) Digar(ro) | | ci
Pripy K33 K136 Pug Pug ap
_ Mipa B K136 K1i66 Mg Mg aie (84)
Duipar(Fi) Dus(ri) Duer(ri) Dugir(ri)  Dugan(ri) cu [’
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where the prescribed uniform and linear voltages Eri, Ero, 5,.i, and D,, were omitted, as they have already
been considered in Problems I and II. Also note that, the system matrices in Egs. (83) and (84) are identical
to those of Problem II in Egs. (59) and (61), so they need not be recomputed. The sequential solutions of
Eqgs. (83)—(85) yield the complete set of generalized deformation coordinates (ay;, aw;, an, i = {3,6},
C1j, C11j, Citjs j = {1, 2}) of Vz.

7.5. Validation example for problem II1

We shall analyze the same homogeneous circular cylinder used for the validation example for Problem
I1. The cylinder is subjected to linearly varying outside circumferential shear tractions, Agy, = 1.0 Pa/L;
linearly varying outside axial shear tractions, Ao, = 1.0 Pa/L; and a quadratically varying outside surface

voltage A*¢,/2 = 1 V/L. Thus, the outside voltage is ¢, = 0 Volts at z= 0, and ¢, = 400 Volts at z = L.

Again, analytical solutions of these problems do not exist. So the semi-analytic results are compared with
those obtained via ANSYS (1998). The comparisons of the stresses, displacements and potential through
the thickness of the cylinder, normalized with their respective maximum values, are displayed in Fig. 6. The
agreement between the two sets of results are quite good. Again note that, these comparisons are made at
the mid-length of the cylinder, away from the two ends where the end-effects are observed.

The free-surface integral of the normal electric displacements defined in Eq. (17) yield the values of
{1.1x1071°, 1.5x 1078, 4.7x107"", 0.0} Coulombs for the quadratic pressure, quadratic potential, linear
axial and linear torsional shear problems, respectively. The corresponding largest individual integrated free-
surface fluxes are {1.2x107°, 3.1x 1074, 7.3x107°, 0.0} Coulombs. Again, the total values are roughly four
orders of magnitude smaller than the individual values, thereby validating the consistency of the semi-
analytic method.

8. Numerical examples: actuation and sensing with a homogeneous PZT4 cylinder

Here, we first consider the actuation of PZT4 circular cylinders of various geometry and crystal ori-
entations. The cylinders are polarized axially by a unit voltage acting at the clamped end (z = L) and
grounding at the other end (z = 0). As a consequence, the voltages on the interior and exterior surfaces vary
linearly between the two extreme values. Fig. 7 displays actuated radial, axial and circumferential dis-
placements per unit length of the cylinder as obtained at the radial coordinate r/r; = 1.0, for different
crystal orientation angles ©@ = [0°,307,60°,90°] and thickness to inner radius ratios ¢/r; = [10,1.0,0.1,0.01].
The cylinder is not actuated axially or radially for the orientation @ = 90°, but the same orientation yields
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Fig. 6. Validation for Problem III: the results are for linear circumferential (Row a) and axial (Row b) shear tractions, and qua-
dratically varying voltages (Row c) prescribed on the exterior surface of the cylinder. The symbols and the (dashed, dotted, etc.) lines
denote the semi-analytic and ANSYS results at the mid-length of the cylinder, respectively.

Fig. 7. Actuation example: the variation of radial, rotational and axial displacements (u,, uy, u.) per unit length of an axially polarized
PZT4 circular cylinder depending on the crystal orientation angle (©) and the logarithm of the thickness to inner radius ratio (z/r).
Note that ® = 0 corresponds to the properties given in Table 1.

the largest actuation in the circumferential direction. The reverse effect is observed for ® = 0°. It is also
noted that for a radially polarized cylinder, the thickness to radius ratio does not play a significant role in
radial and axial actuation, if at all. On the other hand, thin cylinders generally appear to yield a larger
circumferential actuation than the thicker ones.



E. Taciroglu et al. | International Journal of Solids and Structures 41 (2004) 5185-5208 5207

-2

Fig. 8. Sensing example: the variation of electric potential difference between the inside and the outside surfaces (¢) of a PZT4 circular
cylinder depending on the crystal orientation angle (@) and the logarithm of the thickness to inner radius ratio (¢/r;) under (a) linearly
varying pressure, (b) uniform torsional, and (c) uniform axial shear tractions.

The second example involves the sensing of various mechanical surface tractions. Here, we define the
difference of inside and outside electric potentials as, (¢) = |¢; — ¢,|- In all the problems analyzed, this
quantity is uniform along the axial direction and its magnitude can be measured to quantify the surface
tractions acting on the cylinder. Fig. 8 displays the electric potential differences (¢) between the inside and
outside surfaces for three different loading cases: (a) linearly varying pressure and (b) uniform torsional and
(c) axial shear tractions, all acting on the outside surface. It is observed that the thin cylinders do not record
a significant electric potential difference for any of the three loading cases. It is also observed that for
sensing linear pressure, and uniform torsional and axial shears, the optimum crystal angles are 60°, 0°, and
90°, respectively. The fact that these modes of sensing are out-of-phase can be exploited through the use of
multilayered systems in order to develop bimodal or trimodal sensors.

9. Conclusions

A semi-analytical finite method has been presented for analysis of laminated piezoelectric circular cyl-
inders under axisymmetric loads. This method relies on finite element discretization over the thickness of
the cylinder and analytical determination of the electromechanical fields along the other dimensions. Such
an approach provides significant computational savings over fully-discrete numerical methods. The analysis
is based on a statement of the form of the kinematic field in the axial direction that is associated with a
particular stress and electric displacement state. Three such states were considered, i.e., uniform, linearly
varying and quadratically varying in the z-direction. The generalized coordinates for each kinematic field
are determined by consideration of the mechanical and electrical loads prescribed on the lateral surface and
the ends of the circular cylinder. While each of the states with a particular variation of stress and electric
displacement field was treated separately (i.e., uniform, linear, quadratic, etc.), it is noted that the overall
response could have been solved in one step, rather than the three contained in this paper. That which was
presented here was intended to add more clarity to the total solution procedure. A one-step solution will
nevertheless require data from all of the various steps corresponding to each particular variation of the
stress and electric displacement. With the details given for these three states, the extensions to higher-order
axially varying states are apparent. It follows that, by a proper superposition procedure, it is possible to
obtain solutions under arbitrary (axisymmetric) boundary conditions.

Comparison of present results with known analytical solutions and with three-dimensional finite element
results ANSYS (1998) affirms the validity of this method of solution. The provided application example
illustrates the sensing and activation features in piezoelectric cylinders with circular symmetry.
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Since the analysis is predicated on the relaxed formulation of an equivalent Saint-Venant and Almansi-
Michell problem for a circular piezoelectric cylinder, arbitrary point-wise specification of the end conditions
cannot be accommodated. Rather, only integral conditions are admissible. To treat arbitrary end condi-
tions, a quantitative analysis of Saint-Venant’s principle is needed. This subject will be treated in a sub-
sequent study.
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